>> 自然科学版期刊 >> 2022 >> 2022年01期 >> 正文
基于 DWT、MEMD 和模糊熵的脑电信号特征提取与分类研究
时间: 2022-01-10 次数:

陈倩倩, 徐健, 刘秀平,.基于DWT,MEMD和模糊熵的脑电信号特征提取与分类研究[J].河南理工大学学报(自然科学版),2022,41(1):143-152.

CHEN Q Q, XU J, LIU X P, et al. Research on feature extraction and classification of EEG signal based on DWT,MEMD and fuzzy entropy [J].Journal of Henan Polytechnic University(Natural Science) ,2022,41(1):143-152.

基于DWT,MEMD和模糊熵的脑电信号特征提取与分类研究

陈倩倩, 徐健, 刘秀平, 黄磊, 惠楠

西安工程大学 电子信息学院,陕西 西安710048

摘要:针对脑电信号分类准确率不高导致脑控设备控制稳定性差的问题,提出一种基于离散小波变换(DWT)、多变量经验模态分解(MEMD)和模糊熵的特征提取与分类方法。首先,利用 DWT将脑电信号分解成一系列窄带信号;其次,利用MEMD对子带信号进行分解,得到一系列本征模函数(IMFs,选择合适的IMFs进行信号重构,利用模糊熵算法对信号提取特征,作为实验的特征向量;最后,使用支持向量机(SVM)进行分类。利用脑机接口( BCI)大赛数据作为验证集,验证了该算法的有效性,使分类精度提高到了96.2,同时解决了经验模态分解(EMD)中频带覆盖较广的问题。

关键词:脑电信号;离散小波变换;多变量经验模态分解;模糊熵;特征提取

doi:10.16186/j.cnki.1673-9787.2020080018

基金项目: 陕西省重点研发项目(2018GY-173,2019KJ-036)

收稿日期:2020/08/09

修回日期:2020/10/22

出版日期:2022/01/10

Research on feature extraction and classification of EEG signal based on DWT, MEMD and fuzzy entropy

CHEN Qianqian, XU Jian, LIU Xiuping, HUANG Lei, XI Nan

School of Electronic Information,Xi an Engineering University, Xi an 710048 , Shaanxi, china

Abstract: Aiming at the problem that the low classification accuracy of EEG signals results in poor control stability of brain-controlled equipment,a feature extraction method was proposed based on discrete wavelet transform(DWT) ,multivariate empirical mode decomposition(MEMD) and fuzzy entropy.Firstly,the electroencephalogram(EEG) signal was decomposed into a series of narrow band signals with DWT,and then the sub-band signals was decomposed with MEMD to get a set of intrinsic mode functions,which were called intrinsic mode functions(IMFs).Secondly,the appropriate IMFs for signal reconstruction were selected.Then,the fuzzy entropy algorithm was used to extract features from the signal as an experimental feature vector.Finally,support vector machines(SVM) were used for classification.By using the BCI competition data as a verification set,the effectiveness of the algorithm was verified,and the problem of wider EMD mid-band coverage was solved.

Key words:EEG signal;discrete wavelet transform;multivariate empirical mode decomposition;fuzzy entropy

 基于DWT、MEMD和模糊熵的脑电信号特征提取与分类研究_陈倩倩.pdf

最近更新