时间: 2025-06-19 | 次数: |
张宏图, 叶红燕, 刘勇,等.磨料参数对低压磨料空气射流喷嘴磨损影响研究[J].河南理工大学学报(自然科学版),2025,44(4):94-103.
ZHANG H T, YE H Y, LIU Y, et al. Effect of abrasive parameters on nozzle wear in low-pressure abrasive air jet machining[J]. Journal of Henan Polytechnic University (Natural Science) , 2025, 44(4): 94-103.
磨料参数对低压磨料空气射流喷嘴磨损影响研究
张宏图1,2, 叶红燕1,2, 刘勇1,2, 魏建平1,2, 李志平1,2
1.河南理工大学 瓦斯地质与瓦斯治理国家重点实验室培育基地,河南 焦作 454000;2.煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作 454000
摘要: 目的 低压磨料空气射流辅助破岩喷嘴内部受高速运动磨料冲蚀导致磨损过快,为改善喷嘴磨损,提高低压磨料空气射流辅助破岩效率。 方法 选取拉瓦尔喷嘴为研究对象,依托Archard Wear和Relative Wear磨损模型,利用FLUENT-EDEM进行耦合数值模拟,选取磨料质量流量、粒径、形状和种类等主要影响因素进行数值模拟计算,以磨损深度为评价指标,求解不同因素对喷嘴磨损的影响。 结果 研究可知,磨损发生在喷嘴收敛段喷嘴入口0~6 mm,且磨损最大处集中于距喷嘴入口2.62~3.28 mm,之后磨料发生集束作用开始沿喷嘴轴线处运动,收敛段后端和整个扩张段不发生磨损。数值模拟中,磨损规律与磨料碰撞速度、喷嘴内壁的碰撞次数有关,不同磨料参数对喷嘴磨损影响不同。磨料质量流量增大,导致磨料与喷嘴碰撞次数增多,造成磨损深度增大;磨料粒径增大通过影响碰撞时能量从而增大磨损;球形度较小的颗粒由于棱角尖锐会造成更大的磨损;材料密度、剪切模量、泊松比不同对磨损产生了影响不同,其中以石榴石造成的磨损最大。 结论 研究结果可为降低喷嘴磨损提供一定的理论指导。
关键词:磨料空气射流;喷嘴磨损;拉瓦尔喷嘴;磨料参数
doi: 10.16186/j.cnki.1673-9787.2024030064
基金项目:国家自然科学基金资助项目(52274192,52374193);河南省优秀青年科学基金资助项目(232300421062)
收稿日期:2024/03/21
修回日期:2024/07/17
出版日期:2025/06/19
Effect of abrasive parameters on nozzle wear in low-pressure abrasive air jet machining
Zhang Hongtu1,2, Ye Hongyan1,2, Liu Yong1,2, Wei Jianping1,2, Li Zhiping1,2
1.State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo 454000, Henan, China;2.Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454000, Henan, China
Abstract: Objectives The rapid wear of low-pressure abrasive air jet nozzles, caused by the erosion of high-speed abrasive particles inside the nozzle, limits the efficiency of rock breaking. This study aims to analyze the influence of abrasive parameters on nozzle wear to provide guidance for reducing wear and improving rock-breaking efficiency. Methods A Laval nozzle was selected as the research object. Coupled numerical simulations were performed using FLUENT-EDEM and Relative Wear models. Key abrasive parameters—including mass flow rate, particle size, shape, and type—were varied in the simulations. Wear depth was used as the evaluation criterion to assess the effects of these factors on nozzle wear. Results Wear predominantly occurs in the convergent section of the nozzle within 6 mm from the inlet, with the maximum wear concentrated between 2.62 mm and 3.28 mm from the inlet. Beyond this zone, the abrasive particles form a beam flow along the nozzle axis, causing no significant wear in the nozzle’s downstream convergent and expansion sections. The wear pattern is closely related to the abrasive collision velocity and frequency with the nozzle wall. Increased abrasive mass flow results in more frequent collisions and deeper wear. Larger particle sizes increase collision energy, thereby intensifying wear. Particles with lower sphericity and sharper edges cause greater wear. Among different abrasive materials, garnet causes the most severe wear due to its material properties such as density, shear modulus, and Poisson’s ratio. Conclusions This study highlights the critical influence of abrasive collision dynamics and material properties on nozzle wear, offering theoretical guidance for reducing wear.
Key words: abrasive air jet; nozzle wear; laval nozzle; abrasive parameters