供稿: 杨凌霄;李晓阳 | 时间: 2018-11-19 | 次数: |
作者单位:河南理工大学电气工程与自动化学院
摘要:针对传统LQR最优控制器权重矩阵确定困难以及由此导致的响应速度慢等问题,以具有多变量、强耦合、非线性特点的两轮自平衡小车为被控对象,提出了一种通过遗传算法实现LQR控制器参数寻优的方法。选择线性二次型性能指标为目标函数,利用遗传算法的全局优化搜索能力,获取权阵Q的最优解,从而设计状态反馈控制率K,搭建系统动力学模型进行仿真实验。实验结果表明:该方法设计的最优控制器相对于传统的极点配置和LQR方法具有更好的控制效果,系统响应速度更快,超调更小。
基金:国家自然科学基金资助项目(51178164);平顶山天安煤业股份有限公司科技攻关项目(112102210003);
关键词:两轮自平衡小车;线性二次型调节器;遗传算法;最优控制;动力学模型;
DOI:10.16186/j.cnki.1673-9787.2015.01.017
分类号:TP23
Abstract:Aiming at the problem of difficulty to determine the weighting matrix for a conventional linear quadratic regulator(LQR) optimal controller and the slow response caused by this difficulty,a two-wheel self-balancing vehicle with multivariable,strongly coupling,non-linear characteristics is used as a controlled object,puts forward a parameter optimization method of LQR controller based on genetic algorithm.Choosing the linear quadratic performance index as a objective function,the optimal solution of weighting matrix Q is obtained by using global optimization search ability of genetic algorithm.Thus,the state feedback control rate K can be designed,and a dynamical model for the simulation experiment of a system will be built.The results indicate that the GA-LQR controller has a better control effect than a traditional pole placement and an LQR controller,and that the system has more quick response speed and smaller overshoot.