>> 自然科学版期刊 >> 2021 >> 2021年01期 >> 正文
基于多头自注意力和并行混合模型的文本情感分析
时间: 2021-01-10 次数:

李辉, 黄钰杰.基于多头自注意力和并行混合模型的文本情感分析[J].河南理工大学学报(自然科学版),2021,40(1):125-132.

LI H, HUANG Y J.Text sentiment analysis based on multi self-attention and parallel hybrid model[J].Journal of Henan Polytechnic University(Natural Science) ,2021,40(1):125-132.

基于多头自注意力和并行混合模型的文本情感分析

李辉1, 黄钰杰2

1.河南理工大学 物理与电子信息学院,河南 焦作 454000;2.河南理工大学 电气工程与自动化学院,河南 焦作 454000

摘要:针对以往研究大多使用单一模型进行文本情感分析,导致无法很好地捕捉相关文本的情感特征,从而造成情感分析效果不理想的问题,提出一种基于多头自注意力和并行混合模型的文本情感分析方法。首先,利用Word2 vec模型捕捉单词的语义特征,训练词向量;其次,借助双层多头自注意力机制(double layer multi-head self-attention DLMA)学习文本内部的词依赖关系,捕获其内部结构特征;再次,使用并行的双向门限循环神经网络(bi-directional gated recurrent nnit BiGRU )获取文本的序列特征;最后,借助改进的并行卷积神经网络(convolutional neural network CNN)提取深层次特征信息。将该模型分别在2个数据集上进行实验验证,其准确率分别达到92.71%91.08%。结果表明,该方法比其他模型具有更好的学习能力。

关键词:多头自注意力;双向门限循环神经网络;卷积神经网络;文本情感分析

doi:10.16186/j.cnki.1673-9787.2019100022

基金项目:河南省基础与前沿技术研究计划资助项目(152300410103

收稿日期:2019/10/10

修回日期:2019/12/26

出版日期:2021/01/15

Text sentiment analysis based on multi self-attention and parallel hybrid model

LI Hui1, HUANG Yujie2

1.School of Physics and Electronic Information Henan Polytechnic University Jiaozuo  454000 Henan China;2.School of Electrical Engineering and Automation Henan Polytechnic University Jiaozuo  454000 Henan China

Abstract:Most of the past studies used a single model for text sentiment analysis which led to the inability to capture the emotional features of related texts well and led to the problem of unsatisfactory sentiment analysis. A model of text sentiment analysis method based on self-attention and parallel hybrid model was proposed. First the Word2vec model was used to capture the semantic features of words and to train word vectors. Secondly the double layer multi-head self-attention DLMA was used to learn the word dependence within the text and to capture its internal structural features. The sequence characteristics of the text were then acquired by using a parallel bi-directional gated recurrent unit BiGRU .Finally the deep hierarchical feature information was extracted by the improved convolutional neural network CNN .The model was validated on two data sets and the accuracy rate reached 92. 71% and 91.08%.The experimental results showed that the method had better learning performance than other models.

Key words:multi-head self-attention;bi-directional gated recurrent unit;convolutional neural network;text

 基于多头自注意力和并行混合模型的文本情感分析_李辉.pdf

最近更新