>> 自然科学版期刊 >> 2021 >> 2021年04期 >> 正文
导水裂隙带发育高度预测的PCA-GA-Elman优化模型
时间: 2021-07-10 次数:

施龙青, 吴洪斌, 李永雷,.导水裂隙带发育高度预测的PCA-GA-Elman优化模型[J].河南理工大学学报(自然科学版),2021,40(4):10-18.

SHI L Q, WU H B, LI Y L, et al.Optimization model of PCA-GA-Elman for development height prediction ofwater-conducting fissure zone[J].Journal of Henan Polytechnic University(Natural Science) ,2021,40(4):10-18.

导水裂隙带发育高度预测的PCA-GA-Elman优化模型

施龙青1, 吴洪斌1, 李永雷2, 吕伟魁3

1.山东科技大学 地球科学与工程学院,山东 青岛 266590;2.济宁能源发展集团有限公司,山东济宁 272000;3.山东新巨龙能源有限责任公司,山东 荷泽 274918

摘要:针对矿井水害防治中导水裂隙带发育高度难以准确预测的问题,结合煤矿生产实际和工程地质理论,选取采深S、硬岩岩性比例系数b、采高(煤层厚度)M、工作面斜长I、顶板单轴抗压强度为主要影响因素,运用灰色关联分析法(GRA)分析各主要影响因素与导水裂隙带发育高度的相关性,并将主成分分析(PCA)、遗传算法(GA)和优化的Elman神经网络相结合,建立导水裂隙带发育高度预测的PCA-GA-Elman优化模型。结果表明:PCA-GA-Elman优化模型能有效消除因素间的相互影响,并能优化初始权值和阈值,使导水裂隙带发育高度预测更加准确。与PCA-ElmanPCA-BP预测模型相比,PCA-GA-Elman优化模型预测的导水裂隙带发育高度相对误差仅为-6.34% ~0.18%

关键词:导水裂隙带;发育高度;主成分分析;遗传算法;Elman神经网络;PCA-GA-Elman  优化模型

doi:10.16186/j.cnki.1673-9787.2020050031

基金项目:国家自然科学基金资助项目(51804184 41807283 );山东省自然科学基金资助项目(ZR2020KE023

收稿日期:2020/05/11

修回日期:2020/09/04

出版日期:2021/07/15

Optimization model of PCA-GA-Elman for development height prediction ofwater-conducting fissure zone

SHI Longqing1, WU Hongbin1, LI Yonglei2, LYU Weikui3

1.College of Earth Sciences and Engineering Shandong University of Science and Technology Qingdao  266590 Shandong China;2.Jining Energy Development Group Co. Ltd. Jining  272000 Shandong China;3.Shandong New Julong Energy Co. Ltd. Heze  274918 Shandong China

Abstract:For the problem of difficult prediction of the development height of water-conducting fissure zone in mine flood prevention and control by combining the actual coal production with engineering geology theory and by combining the principal component analysis PCA with the genetic algorithm GA and with the optimization of Elman neural network the mining depth s the hard rock lithology ratio coefficient b the mining height coal thickness M the face inclined length l and the roof uniaxial resistance pressure strength were selected as the main influence factors to established the optimization model of PCA-GA-Elman for development height prediction of water-conducting fissure zone. Grey relation analysis GRA was used to analysis the correlation of main influence factors and the development height of water-conducting fissure zone. The results showed that the optimization model of PCA-GA-Elman could effectively eliminate the mutual influence between factors and could optimize the initial weights and threshold so as to make the development height prediction of water-conducting fissure zone more accurate. Compared with the PCA-Elman and PCA-BP prediction models the relative error of the water-conducting fissure zone development height predicted by the optimization model of PCA-GA-Elman was only 6.34% 0.18%.

Key words:water-conducting fissure zone;development height;principal component analysis;genetic algorithm;Elman neural network;optimization model of PCA-GA-Elman

  导水裂隙带发育高度预测的PCA_GA_Elman优化模型_施龙青.pdf

最近更新