时间: 2021-07-10 | 次数: |
施龙青, 吴洪斌, 李永雷,等.导水裂隙带发育高度预测的PCA-GA-Elman优化模型[J].河南理工大学学报(自然科学版),2021,40(4):10-18.
SHI L Q, WU H B, LI Y L, et al.Optimization model of PCA-GA-Elman for development height prediction ofwater-conducting fissure zone[J].Journal of Henan Polytechnic University(Natural Science) ,2021,40(4):10-18.
导水裂隙带发育高度预测的PCA-GA-Elman优化模型
施龙青1, 吴洪斌1, 李永雷2, 吕伟魁3
1.山东科技大学 地球科学与工程学院,山东 青岛 266590;2.济宁能源发展集团有限公司,山东济宁 272000;3.山东新巨龙能源有限责任公司,山东 荷泽 274918
摘要:针对矿井水害防治中导水裂隙带发育高度难以准确预测的问题,结合煤矿生产实际和工程地质理论,选取采深S、硬岩岩性比例系数b、采高(煤层厚度)M、工作面斜长I、顶板单轴抗压强度为主要影响因素,运用灰色关联分析法(GRA)分析各主要影响因素与导水裂隙带发育高度的相关性,并将主成分分析(PCA)、遗传算法(GA)和优化的Elman神经网络相结合,建立导水裂隙带发育高度预测的PCA-GA-Elman优化模型。结果表明:PCA-GA-Elman优化模型能有效消除因素间的相互影响,并能优化初始权值和阈值,使导水裂隙带发育高度预测更加准确。与PCA-Elman和PCA-BP预测模型相比,PCA-GA-Elman优化模型预测的导水裂隙带发育高度相对误差仅为-6.34% ~0.18%。
关键词:导水裂隙带;发育高度;主成分分析;遗传算法;Elman神经网络;PCA-GA-Elman 优化模型
doi:10.16186/j.cnki.1673-9787.2020050031
基金项目:国家自然科学基金资助项目(51804184 ,41807283 );山东省自然科学基金资助项目(ZR2020KE023 )
收稿日期:2020/05/11
修回日期:2020/09/04
出版日期:2021/07/15
Optimization model of PCA-GA-Elman for development height prediction ofwater-conducting fissure zone
SHI Longqing1, WU Hongbin1, LI Yonglei2, LYU Weikui3
1.College of Earth Sciences and Engineering, Shandong University of Science and Technology, Qingdao 266590 , Shandong, China;2.Jining Energy Development Group Co. , Ltd. ,Jining 272000 , Shandong, China;3.Shandong New Julong Energy Co. ,Ltd. , Heze 274918 , Shandong, China
Abstract:For the problem of difficult prediction of the development height of water-conducting fissure zone in mine flood prevention and control, by combining the actual coal production with engineering geology theory, and by combining the principal component analysis ( PCA ) with the genetic algorithm ( GA) and with the optimization of Elman neural network , the mining depth s , the hard rock lithology ratio coefficient b , the mining height ( coal thickness) M, the face inclined length l, and the roof uniaxial resistance pressure strength were selected as the main influence factors to established the optimization model of PCA-GA-Elman for development height prediction of water-conducting fissure zone. Grey relation analysis ( GRA ) was used to analysis the correlation of main influence factors and the development height of water-conducting fissure zone. The results showed that the optimization model of PCA-GA-Elman could effectively eliminate the mutual influence between factors, and could optimize the initial weights and threshold so as to make the development height prediction of water-conducting fissure zone more accurate. Compared with the PCA-Elman and PCA-BP prediction models, the relative error of the water-conducting fissure zone development height predicted by the optimization model of PCA-GA-Elman was only 一6.34% 〜0.18%.
Key words:water-conducting fissure zone;development height;principal component analysis;genetic algorithm;Elman neural network;optimization model of PCA-GA-Elman
导水裂隙带发育高度预测的PCA_GA_Elman优化模型_施龙青.pdf