>> 自然科学版期刊 >> 2021 >> 2021年05期 >> 正文
黄陇煤田煤层甲烷解吸滞后规律及解吸滞后定量评价
时间: 2021-09-10 次数:

高正, 马东民, 陈跃.黄陇煤田煤层甲烷解吸滞后规律及解吸滞后定量评价[J].河南理工大学学报(自然科学版),2021,40(5):16-22.

GAO Z, MA D M, CHEN Y. Law and quantitative evaluation of methane desorption hysteresis of coal seam in Huanglong coalfield[J].Journal of Henan Polytechnic University(Natural Science) ,2021,40(5):16-22.

黄陇煤田煤层甲烷解吸滞后规律及解吸滞后定量评价

高正1,2, 马东民1,2,3, 陈跃1,2,3

1.西安科技大学 地质与环境学院,陕西 西安 710054;2.西安科技大学 陕西省煤炭绿色开发地质保障重点实验室,陕西 西安 710054;3.自然资源部煤炭资源勘查与综合利用重点实验室,陕西 西安 710021

摘要:为研究黄陇煤田低阶煤甲烷解吸滞后规律并定量评价解吸滞后,采集郭家河井田3号煤层煤样(GJH3)、大佛寺井田4号煤层煤样(DFS4)与黄陵二矿井田2号煤层煤样(HL2),采用液氮吸附与等温吸附/解吸试验,分析其孔隙结构特征与吸附/解吸特征,基于Langmuir方程与热力学计算结果,定量评价解吸滞后与吸附/解吸前后吸附热差异。结果表明:(1)温度相同时,煤样吸附能力大小顺序为DFS4 HL2 GJH3 ,煤样残余吸附量大小顺序为HL2 GJH3 DFS4,温度对残余吸附量的影响略有区别,温度并非与残余吸附量呈线性负相关关系,因此需要综合考虑温度对解吸的影响。(2 DFS4 GJH3 HL2的解吸滞后系数为0.4 ~0.6,其中,20 ℃HL2解吸滞后系数最大,吸附/解吸可逆性较差;GJH3解吸滞后系数最小,吸附/解吸可逆性最好;解吸滞后系数随温度升高而减小,吸附/解吸可逆性随温度升高变好。(3)解吸时的等量吸附热均大于吸附时的等量吸附热,解吸需要从体系外吸收热量,吸附和解吸过程的 能量差异可能是解吸滞后的关键因素。

关键词:黄陇煤田;低阶煤;甲烷;残余吸附量;解吸滞后系数;等量吸附热

doi:10.16186/j.cnki.1673-9787.2019120041

基金项目:国家自然科学基金资助项目(41902175);山西省重大科技专项项目(20201101002);陕西省自然科学基础研究计划项目 2019JQ-245

收稿日期:2019/12/14

修回日期:2020/06/23

出版日期:2021/09/15

Law and quantitative evaluation of methane desorption hysteresis of coal seam in Huanglong coalfield

GAO Zheng1,2, MA Dongmin 1,2,3, CHEN Yue 1,2,3

1.College of Geology and Environment Xi an University of Science and Technology Xi an  710054 Shaanxi China;2.Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation Xian  710054 Shaanxi China;3.Key Laboratory of Coal Resources Exploration and Comprehensive Utilization Ministry of Natural Resources Xi an  710021 Shaanxi China

Abstract:In order to study the law of methane desorption hysteresis and quantitative evaluation of coal reservoirs in Huanglongcoa lfiesamplesofcoal-3inGuojiaheminefielcoal-4inDafosiminefieldandcoal-2in Huangling No.2 minefield were collected. Liquid nitrogen adsorption and isothermal adsorption/desorption experiments were adopted to analyze its pore structure characteristics and adsorption and desorption characteristics. Based on Langmuir equation and thermodynamic calculation results the difference between the desorption hysteresis and the adsorption heat changes before and after adsorption/desorption was quantitatively evaluated. The results showed that The results showed that 1 When the temperature was the same the coal adsorption capacity was DFS4 HL2GJH3and the residual adsorption capacity of coal was HL2 GJH3 DFS4.The effect of temperature on residual adsorption was slightly different. Temperature did not have a linear negative correlation with residual adsorption so the effect of temperature on desorption needed to be comprehensively considered;(2Three coal samples DFS4 GJH3 HL2 had a desorption hysteresis coefficient of 0.4 ~0.6HL2 coal sample had the largest desorption hysteresis coefficient and poor reversibility of adsorption/desorption at 20 ℃CJH3 sample had the smallest desorption hysteresis coefficient and the best reversibility of adsorption/desorption the desorption hysteres was coefficient decreases with temperature increasing adsorption/desorption reversibility becomes better;(3The medium heat of adsorption in the desorption process was greater than that of adsorption in the adsorption process. Desorption required supplemental heat from outside the system. The energy difference between the adsorption and desorption processes might be a key factor in the desorption hysteresis.

Key words:Huanglong coalfield;low rank coal;methane;residual adsorption capacity;desorption hysteresis coefficient;equivalent heat of adsorption

 黄陇煤田煤层甲烷解吸滞后规律及解吸滞后定量评价_高正.pdf

最近更新