>> 自然科学版期刊 >> 2021 >> 2021年06期 >> 正文
基于IGWO-SVM的超声辅助磨削Al2O3陶瓷表面粗糙度预测
时间: 2021-11-10 次数:

赵明利, 宋士杰, 李博涵.基于IGWO-SVM的超声辅助磨削Al2 O3陶瓷表面粗糙度预测[J].河南理工大学学报(自然科学版),2021,40(6):117-121.

ZHAO M L, SONG S J, LI B H.Surface roughness prediction of Al2O3 ceramics machined by ultrasonic assisted grinding based on IGWO-SVM[J].Journal of Henan Polytechnic University(Natural Science) ,2021,40(6):117-121.

基于IGWO-SVM的超声辅助磨削Al2O3陶瓷表面粗糙度预测

赵明利, 宋士杰, 李博涵

河南理工大学 机械与动力工程学院,河南 焦作454000

摘要:为预测超声辅助加工对Al2O3陶瓷表面粗糙度,进行了超声辅助磨削对Al2O3陶瓷试验。用改进的灰狼优化算法(IGWO)对支持向量机(SVM)进行参数优化,建立IGWO-SVM预测模型,并与PSO-SVM预测模型、CS-SVM预测模型、GWO-SVM预测模型进行比较。结果表明:IGWO-SVM预测模型预测值与试验值最大绝对误差值为0.411 9,最小绝对误差值为0.002 4,平均绝对误差值为0.145 6,平方相关系数为0.931 092,均方误差为0.000 399 8,相比PSO- SVM 预测模型、CS-SVM预测模型、GWO-SVM预测模型,该模型具有更高的预测精度和可靠度,能够对超声辅助磨削Al2O3陶瓷表面粗糙度进行更精准的预测。

关键词:超声加工;Al2O3陶瓷;表面粗糙度;支持向量机

doi:10.16186/j.cnki.1673-9787.2020110024

基金项目:国家自然科学基金资助项目(E51175153);河南理工大学博士基金资助项目(B2016-27

收稿日期:2020/11/06

修回日期:2021/01/08

出版日期:2021/11/15

Surface roughness prediction of Al2O3 ceramics machined by ultrasonic assisted grinding based on IGWO-SVM

ZHAO Mingli, SONG Shijie, LI Bohan

School of Mechanical and Power Engineering,Henan Polytechnic University,Jiaozuo 454000 ,Henan,China

Abstract:In this work ,the ultrasonic-assisted grinding of Al2O3 ceramics was experimented to predict the sur-face roughness of ultrasonic-assisted grinding of Al2O3 ceramics. The improved gray wolf optimization algorithmIGWOwas used to optimize the parameters of the support vector machineSVM ,and the IGWO-SVM pre-diction model was established to predict the surface roughness. The IGWO-SVM model was compared with PSO-SVM prediction model ,CS-SVM prediction model ,and GWO-SVM prediction model. 'The results showed that the maximum absolute error between the predicted value of the IGWO-SVM prediction model and the experimental value was 0.411 9 ,the absolute minimum error was 0.002 4the absolute average error was 0.145 6the square correlation coefficient was 0.931 092 ,and the mean square error was 0.000 399 8.Compared with the PSo-SVM prediction model ,the CS-SVM prediction model and CWO-SVM prediction model ,the proposed model featured higher prediction accuracy and reliability ,and surface roughness of ultrasonic-assisted grinding could be predicted more accurately.

Key words:ultrasonic machining;AlO ceramic;surface roughness;support vector machine

 基于IGWO-SVM的超声辅助磨...Al_2O_3陶瓷表面粗糙度预测_赵明利.pdf

最近更新