时间: 2022-03-10 | 次数: |
乔东平, 柏文通, 文笑雨,等.基于关联规则的作业车间调度问题改进遗传算法研究[J].河南理工大学学报(自然科学版),2022,41(2):138-148.
QIAO D P, BAI W T, WEN X Y, et al. Research on improved genetic algorithm for job-shop scheduling problem based on association rules[J].Journal of Henan Polytechnic University(Natural Science) ,2022,41(2):138-148.
基于关联规则的作业车间调度问题改进遗传算法研究
乔东平1,2, 柏文通1,2, 文笑雨1,2, 李浩1,2, 王雅静1,2
1.郑州轻工业大学 机电工程学院,河南 郑州 450002;2.河南省机械装备智能制造重点实验室,河南 郑州 450002
摘要:针对初始种群对遗传算法求解作业车间调度结果影响较大的问题,提出基于关联规则的作业车间调度问题改进遗传算法(association rules improvement genetic algorithm, AR-GA),以提升算法性能。首先,在遗传算法种群初始化阶段借助关联规则获取基因序列中的频繁工序块;其次,在交叉阶段根据频繁工序块在待交叉种群的分布中设计3种交叉方式;最后,在变异过程中结合分段海明距离引导子代种群变异,并且在每次迭代后更新频繁工序块信息。标准案例测试结果表明,改进后的算法在求解作业车间调度问题时求解效率更高,稳定性更好。
关键词:作业车间调度;初始种群;遗传算法;关联规则
doi:10.16186/j.cnki.1673-9787.2020070062
基金项目:国家自然科学基金资助项目(51775517,51905494)
收稿日期:2020/07/17
修回日期:2020/10/22
出版日期:2022/03/15
Research on improved genetic algorithm for job-shop scheduling problem based on association rules
QIAO Dongping 1,2, BAI Wentong 1,2, WEN Xiaoyu 1,2, LI Hao 1,2, Wang Yajing 1,2
1.College of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 , Henan, China;2.Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou 450002 , Henan, China
Abstract: Aim to the problem that initial population had a greater impact on the results of genetic algorithm solving job shop scheduling,an association rules improvement genetic algorithm( AR-GA) was proposed to improve the performance of the algorithm.Association rules were introduced to obtain frequent process blocks of the gene sequence in population initialization stage.According to the number of crossover individuals with frequent process blocks,three different crossover methods were designed in the crossover stage.The Segmented Hamming distance was adopted to guide mutation of the offspring population in the mutation stage,and the information of frequent process blocks was updated after each-iteration.Standard case test results showed that the improved algorithm had higher efficiency and better stability when addressing job shop scheduling problem.
Key words:job-shop scheduling;initial population;genetic algorithm;association rule