时间: 2024-09-24 | 次数: |
荣腾龙, 任箫剑, 陈召,等.深部矿井TBM掘进巷道通风及降温耦合模拟分析[J].河南理工大学学报(自然科学版),2024,43(6):18-26.
RONG T L, REN X J, CHEN Z,et al.Coupling simulation analysis of ventilation and cooling in TBM tunneling roadway of deep mine[J].Journal of Henan Polytechnic University(Natural Science) ,2024,43(6):18-26.
深部矿井TBM掘进巷道通风及降温耦合模拟分析
荣腾龙1,2, 任箫剑1, 陈召1, 王嘉尉1, 王龙飞1,2, 刘鹏炬1
1.河南理工大学 能源科学与工程学院,河南 焦作 454000;2.煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作 454000
摘要: 目的 针对TBM(tunnel boring machine)掘进巷道所面临的深井巷道高温问题, 方法 基于k-ε湍流方程和流体传热方程构建非等温流动耦合理论,对巷道风速和温度演化过程进行模拟,研究不同风筒出口风速、不同风筒出口温度和不同风筒位置等因素对巷道内通风和降温过程的影响。 结果 结果表明:巷道平均风速与风筒出口风速基本呈线性关系,风筒布置在巷道顶部通风降温效果最佳;风筒出口风速与巷道温度呈负指数相关关系,增加风速可以降低巷道温度;风筒出口温度与巷道截面平均温度基本呈线性关系,巷道内温度随着风筒出口温度升高而升高;掘进工作面达到26 ℃及以下时风筒出口风速和风筒出口温度之间的多项式关系得到了确定。 结论 研究结果可为解决TBM掘进深井巷道的高温问题提供参考。
关键词:深部矿井;TBM;掘进巷道;通风降温;数值模拟;影响因素
doi:10.16186/j.cnki.1673-9787.2023070022
基金项目:国家自然科学基金资助项目(52004081,52374086);河南省矿产资源绿色高效开采与综合利用重点实验室开放基金资助项目(KCF2216);河南省地下工程与灾变防控重点实验室开放基金资助项目(KFKT 2022-08);焦作市道路交通与运输工程技术研究中心开放基金资助项目(JRTT2023008)
收稿日期:2023/07/13
修回日期:2023/09/22
出版日期:2024-09-24
Coupling simulation analysis of ventilation and cooling in TBM tunneling roadway of deep mine
RONG Tenglong1,2, REN Xiaojian1, CHEN Zhao1, WANG Jiawei1, WANG Longfei1,2, LIU Pengju1
1.School of Energy Science and Engineering,Henan Polytechnic University,Jiaozuo 454000,Henan,China;2.Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization,Jiaozuo 454000,Henan,China
Abstract: Objectives Aiming at the high-temperature problem of deep roadways in tunnel boring machine(TBM) tunneling, Methods the non-isothermal flow coupling theory was constructed based on the k-ε turbulence equation and fluid heat transfer equation to simulate the evolution of wind speed and temperature in the roadway. The effects of different air duct outlet wind speeds, different air duct outlet temperatures and different air duct positions on the ventilation and cooling process in the roadway were studied. Results The results showed that the average wind speed in the roadway was essentially linear with the wind speed at the outlet of the air duct, and the ventilation and cooling effect of the air duct positioned at the top of the roadway was the most effective. The wind speed at the outlet of the air duct exhibited a negative exponential correlation with the roadway temperature, indicating that as wind speed increased, temperature decreased. Additionally, the outlet temperature of the air duct was linearly related to the average temperature of the roadway, with roadway temperature rising as the outlet temperature of the air duct increased. The polynomial relationship between the outlet wind speed and the outlet temperature of the air duct was determined for conditions when the tunneling face temperature was 26 °C and below. Conclusions The research results provided a reference for addressing the high-temperature issues encountered in TBM tunneling deep roadways.
Key words:deep mine;TBM;tunneling roadway;ventilation and cooling;numerical simulation;influencing factors