>> 自然科学版 >> 当期目录 >> 正文
裂隙岩体凝胶类材料注浆封孔控制范围影响因素分析
时间: 2025-07-23 次数:

刘晓, 张宇恒, 宣德全,等.裂隙岩体凝胶类材料注浆封孔控制范围影响因素分析[J].河南理工大学学报(自然科学版),2025,44(5):72-81.

LIU X, ZHANG Y H, XUAN D Q,et al.Analysis of factors influencing the control range of grouting and hole sealing with gel-like materials in fractured rock masses[J].Journal of Henan Polytechnic University(Natural Science) ,2025,44(5):72-81.

裂隙岩体凝胶类材料注浆封孔控制范围影响因素分析

刘晓1, 张宇恒1, 宣德全2, 谢佳伟1, 蔺海晓3, 徐森4

1.河南理工大学 能源科学与工程学院,河南 焦作  454000;2.武汉理工大学 安全科学与应急管理学院,湖北 武汉  430070;3.河南理工大学 土木工程学院,河南 焦作  454000;4.陕西长武亭南煤业有限公司,陕西 咸阳 713602

摘要: 目的 在煤矿瓦斯抽采工程中,穿层钻孔穿越的裂隙岩体是瓦斯渗流的关键通道。注浆材料在裂隙围岩体内有效注入范围直接影响钻孔密封的完整性和气密性。为了提高瓦斯抽采质量分数,分析裂隙岩体注浆封孔控制范围影响因素。 方法 以胍胶类材料为注浆封孔材料,通过建立瓦斯抽采钻孔围岩体裂隙注浆模型,采用响应面法(RSM)系统设计多因素试验方案并对数据进行分析,基于COMSOL Multiphysics多物理场仿真平台构建钻孔周围岩体随机裂隙场模型,模拟裂隙场内不同裂隙密度、注浆压力、材料黏度、裂隙宽度等因素对封孔材料注入有效范围的影响。 结果 结果表明:裂隙岩体注浆封孔过程中,对封孔材料有效注入范围的影响因素显著性排序依次为裂隙宽度,材料黏度,裂隙密度,注浆压力。通过优化工程可控变量(注浆压力、材料黏度)可以有效削弱地质不可控变量(裂隙密度、裂隙宽度)对注浆扩散范围的影响。  结论 根据以上研究结果,通过对岩层裂隙的实际观测情况,研判裂隙发育特征(裂隙宽度、裂隙密度),动态调整注浆材料黏度和注浆压力。针对裂隙宽度小、注浆材料难以充分充填的情况,应适当提高注浆压力以增强材料渗透能力,并选用低黏度注浆材料以提升其在微裂隙中的可注性与扩散范围,从而提升封孔的密实度、气密性,增强封孔效果。

关键词:响应面法;扩散范围;材料黏度;注浆压力;数值模拟

DOI:10.16186/j.cnki.1673-9787.2023070018

基金项目:国家自然科学基金资助项目(51974108);河南省重点研发与推广专项(科技攻关)(232102320231)

收稿日期:2023/07/10

修回日期:2023/11/08

出版日期:2025/07/23

Analysis of factors influencing the control range of grouting and hole sealing with gel-like materials in fractured rock masses

Liu Xiao1, Zhang Yuheng1, Xuan Dequan2, Xie Jiawei1, Lin Haixiao3, Xu Sen4

1.School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo  454000, Henan, China;2.School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan  430070, Hubei, China;3.School of Civil Engineering, Henan Polytechnic University, Jiaozuo  454000, Henan, China;4.Shaanxi Changwu Tingnan Coal Industry Co., Ltd., Xianyang  713602, Shaanxi, China

Abstract: Objectives In coal mine gas drainage projects, the fractured rock mass penetrated by through-layer boreholes serves as a key channel for gas seepage. The effective diffusion range of grouting materials within the fractured surrounding rock directly affects the integrity and airtightness of borehole sealing. To improve the quality of gas drainage, this study analyzes the factors influencing the control range of grouting and hole sealing in fractured rock masses.  Methods Using a guanidine-based gel material for grouting and sealing, a fracture grouting model of the rock mass surrounding a gas drainage borehole was established. The response surface methodology (RSM) was employed to design a multi-factor experimental scheme and analyze the data. A random fracture field model was constructed in the surrounding rock using the COMSOL Multiphysics platform to simulate the effects of fracture density, grouting pressure, material viscosity, and fracture aperture on the effective diffusion range of the sealing material. Results The significance ranking of influencing factors on the effective injection range is as follows: fracture aperture, material viscosity, fracture density, and grouting pressure. Optimizing the engineering-controllable variables (grouting pressure and material viscosity) can effectively mitigate the adverse effects of geological-uncontrollable variables (fracture density and fracture aperture) on the diffusion range.  Conclusions Based on the observed fracture characteristics in rock layers (e.g., aperture and density), the grouting pressure and material viscosity should be dynamically adjusted. For cases with narrow fractures where the material is difficult to fully penetrate, increasing grouting pressure enhances material permeability, and selecting low-viscosity grout improves injectability and diffusion in micro-fractures, thereby improving sealing compactness, airtightness, and overall effectiveness.

Key words:response surface methodology;diffusion range;material viscosity;grouting pressure;numerical simulation

最近更新