>> 自然科学版 >> 当期目录 >> 正文
初始地应力影响下水平层状岩体隧道支护结构的爆破振动响应特征
时间: 2025-07-23 次数:

于建新, 刘文金, 张馨,等.初始地应力影响下水平层状岩体隧道支护结构的爆破振动响应特征[J].河南理工大学学报(自然科学版),2025,44(5):100-110.

YU J X, LIU W J, ZHANG X,et al.Blasting vibration response characteristics of tunnel support structures in horizontally layered rock masses under initial in-situ stress[J].Journal of Henan Polytechnic University(Natural Science) ,2025,44(5):100-110.

初始地应力影响下水平层状岩体隧道支护结构的爆破振动响应特征

于建新1, 刘文金1, 张馨2, 张浩3

1.河南理工大学 土木工程学院,河南 焦作  454000;2.中铁十八局集团有限公司,天津  300222;3.山东科技大学 山东省土木工程防灾减灾重点实验室,山东 青岛  266590

摘要: 目的 为分析水平层状岩体隧道爆破开挖下的围岩稳定性,开展初始地应力影响下水平层状岩体隧道支护结构的爆破振动研究。 方法 采用LS-DYNA有限元分析软件,构建3种不同地应力和3种不同爆破参数下的数值模型,计算并分析隧道支护结构典型位置处的动态应力分布特征和振动速度响应规律。  结果 结果表明:水平层状岩体隧道爆破开挖下,掌子面后方一定距离内的围岩会随着地应力和炮孔类型的变化出现峰值振速增大现象;掏槽孔爆破掌子面后方10 m处,峰值振速最大增幅1.86倍,辅助孔爆破掌子面后方15 m处,峰值振速最大增幅1.83倍;掌子面处拱肩峰值振速掏槽孔爆破时,最大是辅助孔的4.61倍,是周边孔的41.17倍;随着地应力增大,支护结构不同部位横向和竖向压应力差值逐渐增大,30 MPa地应力下隧道爆破支护结构最大产生186.55 MPa的横向压应力和176.39 MPa的竖向压应力;水平层状围岩掌子面掏槽孔爆破时拱顶和拱肩峰值振速最大,周边孔爆破时峰值振速最小;锚杆动态拉应力在掌子面不同爆破参数下具有近线性的变化规律,掏槽爆破峰值14.21 MPa,辅助爆破峰值5.88 MPa,周边爆破峰值1.36 MPa,呈现递减规律。  结论 水平层状岩体隧道开挖中地应力增加会引起支护结构的峰值应力增加,不同爆破参数下掏槽爆破引起的爆破振动最大。

关键词:层状岩体;隧道爆破;地应力;爆破参数;数值模拟

DOI:10.16186/j.cnki.1673-9787.2023070026

基金项目:国家自然科学基金资助项目(42107200);河南省博士后科研项目(202101036);河南理工大学杰出青年基金资助项目(J2023-4)

收稿日期:2023/07/16

修回日期:2024/03/08

出版日期:2025/07/23

Blasting vibration response characteristics of tunnel support structures in horizontally layered rock masses under initial in-situ stress

Yu Jianxin1, Liu Wenjin1, Zhang Xin2, Zhang Hao3

1.School of Civil Engineering, Henan Polytechnic University, Jiaozuo  454000, Henan, China;2.China Railway 18 Bureau Group Co., Ltd., Tianjin  300222, China;3.Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao  266590, Shandong, China

Abstract: Objectives To analyze the stability of surrounding rock during tunnel blasting excavation in horizontally layered rock masses under initial in-situ stress. Methods Using LS-DYNA finite element software, numerical models were established under three different in-situ stress levels and three sets of blasting parameters. The dynamic stress distribution and vibration velocity response at typical positions of the tunnel support structures were computed and analyzed. Results The results show that during tunnel blasting excavation in horizontally layered rock masses, the peak particle velocity (PPV) of surrounding rock behind the tunnel face increases with higher in-situ stress and changes in blasthole types. For cut-hole blasting, the maximum PPV increases by 1.86 times at 10 m behind the tunnel face, and for auxiliary-hole blasting, by 1.83 times at 15 m. The PPV at the spandrel of the tunnel face under cut-hole blasting is 4.61 times higher than that of auxiliary-hole blasting and 41.17 times higher than that of peripheral-hole blasting. As the in-situ stress increases,  the difference between lateral and vertical compressive stress in various parts of the support structure also increases. At 30 MPa in-situ stress, the maximum lateral and vertical compressive stresses in the support structure reach 186.55 MPa and 176.39 MPa, respectively. Among the three blasting types, cut-hole blasting induces the highest PPV at the vault and spandrel, while peripheral-hole blasting yields the lowest. The dynamic tensile stress of anchor bolts shows a nearly linear relationship with different blasting parameters: the peak tensile stresses are 14.21 MPa for cut-hole blasting, 5.88 MPa for auxiliary-hole blasting, and 1.36 MPa for peripheral-hole blasting, displaying a decreasing trend.  Conclusions In tunnel excavation of a horizontally layered rock masses, increased in in-situ stress leads to higher peak stresses in the support structures. Among different blasting parameters, cut-hole blasting produces the strongest vibration response.

Key words:layered rock mass;tunnel blasting;in-situ stress;blasting parameters;numerical simulation

最近更新