>> 自然科学版期刊 >> 2024 >> 2024年02期 >> 正文
微纳米孔隙内气体流动特性与LBM数值模拟研究
供稿: 王登科,袁明羽,李振,张清清,尚政杰,付建华,王岳栩,唐家豪,郭玉杰,庞晓非 时间: 2024-03-25 次数:

王登科,袁明羽,李振,等.微纳米孔隙内气体流动特性与LBM数值模拟研究[J.河南理工大学学报(自然科学版),2024432):15-25.

WANG D KYUAN M YLI Zet al.Gas flow characteristics in micro and nano pores and its LBM numerical simulationJ.Journal of Henan Polytechnic UniversityNatural Science),2024432):15-25.

微纳米孔隙内气体流动特性与LBM数值模拟研究

王登科123,袁明羽12,李振4,张清清5,尚政杰6,付建华6,王岳栩6,唐家豪12,郭玉杰12,庞晓非12

1.河南理工大学 河南省瓦斯地质与瓦斯治理重点实验室-省部共建国家重点实验室培育基地,河南 焦作 4540002.河南理工大学 安全科学与工程学院,河南 焦作 4540003.河南理工大学 煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作 4540004.太原理工大学 安全与应急管理工程学院,山西 太原 0300245.中煤科工集团沈阳研究院有限公司,辽宁 抚顺 1131226.郑州煤炭工业(集团)有限责任公司,河南 郑州 450000

摘要: 目的 研究瓦斯气体在煤层中的流动特性对于揭示煤层瓦斯赋存机理和扩散运移特性具有重要意义。煤中微纳米级孔隙结构十分复杂,为研究煤层瓦斯气体在微纳米孔隙中的流动特性,方法以均质纳米多孔炭薄膜为测试对象,采用扫描电镜实验对其孔隙大小和孔隙率进行定性定量分析;利用纳米尺度气体流动特征实验装置开展微纳米孔隙的气体流动实验研究,通过对比分析传统达西渗流模型和适用于微尺度下气体流动模型, 结果 得到更为详细的微纳米孔隙内气体流动特性:纳米多孔炭薄膜的视渗透率随着进气口压力的升高而下降,二者呈负相关的线性变化规律;视渗透率随着努森数降低而降低,二者呈正相关的线性变化规律,表明气体在微纳米尺度下的流动不符合传统的达西定律,滑脱效应和气体扩散不可忽视。采用格子Boltzmann方法(lattice boltzmann methodLBM)模拟不同进气口压力下的气体流动,得到不同气体压力下出口的气体流量,与实验结果进行对比,LBM模拟的平均误差为8.25%,整体吻合性较好,表明LBM数值模拟可有效揭示气体在微纳米尺度下的流动特性。结论 研究结果可为今后分析煤层中的瓦斯流动机制和流动规律提供理论借鉴。

关键词:微纳米孔隙;纳米多孔炭;气体流动特性;LBM模拟;LBM-D2Q9模型

doi:10.16186/j.cnki.1673-9787.2023010023

基金项目:国家自然科学基金资助项目(52174174);河南省高等学校重点科研项目计划基础研究专项项目(21zx004);河南理工大学创新团队计划项目(T2022-1);河南理工大学重点基金资助项目(NSFRF220205

收稿日期: 2023/01/13

修回日期: 2023/03/02

出版日期:2024/03/25

Gas flow characteristics in micro and nano pores and its LBM numerical simulation

WANG Dengke123YUAN Mingyu12LI Zhen4ZHANG Qingqing5SHANG Zhengjie6FU Jianhua6WANG Yuexu6TANG Jiahao12GUO Yujie12PANG Xiaofei12

1.State Key Laboratory Cultivation Base for Gas Geology and Gas ControlHenan Polytechnic UniversityJiaozuo454000HenanChina2.Collgeg of Safety Science and EngineeringHenan Polytechnic UniversityJiaozuo454000HenanChina3.Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency UtilizationJiaozuo 454000HenanChina4.College of Safety and Emergency Management EngineeringTaiyuan University of TechnologyTaiyuan 030024ShanxiChina5.China Coal Technology and Engineering Group Shenyang Research Institute Co.Ltd.Fushun 113122LiaoningChina6.Zhengzhou Coal IndustryGroupCo.Ltd.Zhengzhou 450000HenanChina

Abstract: Objectives It is important to study the flow characteristics of gas in coal seams to reveal the mechanism of coal seam gas storage and transport characteristics.The number and structure of micro and nanoscale pores in coal are very complexand to study the flow characteristics of coal seam gas in micro and nanoscale pores Methods homogeneous nanoporous carbon films were tested and their pore size and porosity were qualitativelyand quantitatively analyzed by scanning electron microscopy experimentsthe experimental study of gas flow in micro and nano pores was carried out by using a nano-scale gas flow characterization experimental device. Results A more accurate characterization of the flow of gases within micro- and nano-pores is obtained by comparing the conventional Darcy percolation model with a model applicable to gas flow at the micro-scale.The apparent permeability of nanoporous carbon films decreases with increasing inlet pressure in a negatively correlated linear lawwhile the gas permeability decreases with decreasing Knudsen number in a positively correlated linear lawindicating that the flow of gas at the micro- and nano-scale does not conform to the conventional Darcys lawand the slip effect and gas diffusion cannot be neglected.The lattice Boltzmann method is used to simulate the gas flow at different inlet pressures to obtain the outlet gas flow rate at different gas pressures.When compared with the experimental resultsthe average error of LBM simulation results is 8.25%which is in good agreement with the test resultsindicating that LBM numerical simulations effectively reveal the flow characteristics of gases at the micro- and nano-scale. Conclusions The results of the study can provide a reference for future research on gas flow mechanisms and flow patterns in coal seams.

Key words:micro-nanoporesnanoporous carbongas flow characteristicsLBM simulationLBM-D2Q9 model




最近更新