供稿: 王朋, 李瑞, 程志恒, 孔德中, 陈昊熠, 张宏图 | 时间: 2024-05-15 | 次数: |
王朋, 李瑞, 程志恒,等.浅埋煤层开采覆岩“梯形”破断参数与裂隙演化分析[J].河南理工大学学报(自然科学版),2024,43(3):50-59.
WANG P , LI R , CHENG Z H ,et al.Analysis of “trapezoid” fracture parameters and fracture evolution of overburden in shallow coal seam mining[J].Journal of Henan Polytechnic University(Natural Science) ,2024,43(3):50-59.
浅埋煤层开采覆岩“梯形”破断参数与裂隙演化分析
王朋1, 李瑞2,3, 程志恒4,5, 孔德中1, 陈昊熠6, 张宏图7
1.贵州大学 矿业学院,贵州 贵阳 550025 2.陕西省神木市能源局,陕西 神木 719300 3.中国矿业大学(北京) 能源与矿业学院,北京 100083 4.华北科技学院 矿山安全学院,北京 101601 5.煤炭开采水资源保护与利用国家重点实验室,北京 102209 6.北京科技大学 土木与资源工程学院,北京 100083 7.河南理工大学 安全科学与工程学院,河南 焦作 454000
摘要: 目的 为了探究浅埋煤层开采覆岩“梯形”破断参数与裂隙演化规律间的关联机制,并量化表征覆岩垮落、裂隙分布特征, 方法 以崖窑峁煤矿为研究对象,采用理论分析、物理相似模拟、数值模拟、现场实测相结合的方法,分析覆岩垮落空间分布形态,并量化表征上覆岩层垮落“梯形”的分布参数。 结果 结果表明:上覆岩层受煤层开采扰动影响,沿两侧破断线整体呈“梯形”形态,由于破断角φ,γ不同,故覆岩采动裂隙在空间上呈非对称“斜四边形”裂隙发育体的展布形态, 结论 基于理论计算得出崖窑峁矿业30204工作面覆岩垮落分布形态,覆岩垮落两侧破断角开切巷处破断角φ∈[58.7°,68.7°),采煤机机头处破断角γ∈(60.8°,67.8°],并根据破断角公式进一步计算,得出开切巷处覆岩垮落长度Lφj =11.5 m;采煤机机头处覆岩垮落长度Lγj = 10.4 m。依据现场30204工作面3-1煤层顶板垮落实际监测数据,得出上覆岩层垮落的最佳高度为11~30 m,裂隙发育最佳宽度在距离工作面开切巷5 m和采煤机机头5 m范围内。
关键词:浅埋煤层;破断参数;覆岩垮落;数值模拟;相似模拟;现场实测
doi:10.16186/j.cnki.1673-9787.2023060054
基金项目:煤炭开采水资源保护与利用国家重点实验室开放基金(GJNY-20-113-17);国家自然科学基金资助项目(52074120)
收稿日期:2023/06/27
修回日期:2023/09/22
出版日期:2024/05/15
Analysis of “trapezoid” fracture parameters and fracture evolution of overburden in shallow coal seam mining
WANG Peng1, LI Rui2,3, CHENG Zhiheng4,5, KONG Dezhong1, CHEN Haoyi6, ZHANG Hongtu7
1.Mining College of Guizhou University,Guiyang 550025,Guizhou,China 2.Shenmu Energy Bureau of Shanxi Province,Shenmu 719300,Shaanxi,China 3.School of Energy and Mining Engineering,China University of Mining and Technology (Beijing),Beijing 100083,China 4.School of Mine Safety,North China Institute of Science and Technology,Beijing 101601,China 5.State Key Laboratory of Water Resource Protection and Utilization in Coal Mining,Beijing 102209,China 6.School of Civil and Resources Engineering,University of Science and Technology Beijing,Beijing 100083,China 7.College of Safety Science and Engineering,Henan Polytechnic University,Jiaozuo 454000,Henan,China
Abstract: Objectives Objectives In order to explore the correlation mechanism between the “trapezoidal” fracture parameters and fracture evolution law of overburden mining in shallow coal seam,and quantify the distribution characteristics of overburden caving and fracture. Methods Taking Yayaomao Coal Mine as the research object,this paper analyzes the spatial distribution pattern of overlying rock caving and quantitatively characterizes the distribution parameters of the “trapezoid” of overlying rock caving by means of theoretical analysis, physical similarity simulation,numerical simulation,and field measurement.The overlying rock caving presents an “asymmetric oblique four-sided” type. Results The research results show that the overlying strata, affected by the disturbance of coal seam mining, presents a “trapezoidal” shape along the fracture line on both sides.Due to the φ,γ difference of fracture angles,the mining fracture of overlying rock presents an “asymmetric oblique four-sided” type fracture development body distribution shape in space. Conclusions Based on theoretical calculations,it is concluded that the caving distribution pattern of overlying rock is studied on the working face of Yayaomao Mining Industry 30204.It is concluded that the fracture angle at the opening hole on both sides of the caving rock is φ∈[58.7°,68.7°),and the fracture angle at the shearer head is γ∈(60.8°,67.8°].The overburden collapse length was further calculated based on the angle of rupture equation Lφj =11.5 m, Lγj = 10.4 m.According to the on-site measurement,30204 working face 3-1 coal seam roof collapse monitoring data concluded that the best height of the overlying rock collapse in 11~30 m,and the best width of the fissure development is within 5 m from the working face cutting eye and coal mining machine head.
Key words:shallow buried coal seam;breaking parameter;numerical simulation;simulation of similarity;field measurement;