供稿: 虞爱平, 陈涛, 陈哲涵, 张露, 陈宣东 | 时间: 2024-07-31 | 次数: |
虞爱平, 陈涛, 陈哲涵,等.裂纹对弹性波在混凝土中传播特性的影响研究[J].河南理工大学学报(自然科学版),2024,43(5):183-192.
YU A P, CHEN T, CHEN Z H, et al.Study on the effect of cracks on the propagation characteristics of elastic waves in concrete[J].Journal of Henan Polytechnic University(Natural Science) ,2024,43(5):183-192.
裂纹对弹性波在混凝土中传播特性的影响研究
虞爱平1,2, 陈涛1, 陈哲涵1, 张露1, 陈宣东1,2
1.桂林理工大学 土木工程学院,广西 桂林 541004;2.桂林理工大学 广西工程结构与建筑节能重点实验室,广西 桂林 541004
摘要: 目的 为研究混凝土中裂纹对弹性波传播特性的影响, 方法 采用COMSOL软件构建弹性波在不同形态混凝土裂纹中的传播数值模型,并开展带裂纹混凝土的弹性波传播试验,系统研究混凝土裂纹特征(裂纹角度、裂纹深度、裂纹距声发射源距离、裂纹数量等)与弹性波传播之间的关系。 结果 研究发现:数值模拟结果与试验现象吻合较好,验证了数值模型的可靠性。其中,裂纹数量和裂纹距声发射源距离的变化对回波峰值影响较大,距声发射源2 cm裂纹的回波峰值最大,为3.46×106 Pa;对波速和信号损伤影响最大的因素为裂纹深度,60 mm深度裂纹损伤率高达62.14%、波速衰减至2 590.674 m/s,其次为裂纹数量,信号损伤率达31.28%。基于不同裂纹特征的波速变化规律,对裂纹角度和深度的波速关系模型进行回归分析,回归曲线拟合优度较好,R2均大于0.95。 结论 混凝土中存在的裂纹和裂纹特征对弹性波传播具有显著影响,本文研究结果为混凝土无损检测技术提供了理论支撑。
关键词:裂纹形态;回波峰值;波速信号;损伤;裂纹深度
doi:10.16186/j.cnki.1673-9787.2023050020
基金项目:国家自然科学基金资助项目(51968014);广西自然科学基金资助项目(2022GXNSFAA035553)
收稿日期:2023/05/12
修回日期:2023/06/25
出版日期:2024/07/31
Study on the effect of cracks on the propagation characteristics of elastic waves in concrete
YU Aiping1,2, CHEN Tao1, CHEN Zhehan1, ZHANG Lu1, CHEN Xuandong1,2
1.College of Civil Engineering,Guilin University of Technology,Guilin 541004,Guangxi,China;2.Guangxi Key Laboratory of Engineering Structure and Building Energy Efficiency,Guilin University of Technology,Guilin 541004,Guangxi,China
Abstract: Objectives To study the effect of cracks in concrete on elastic wave propagation, Methods in this paper, a numerical model of elastic wave propagation in concrete cracks of different morphologies was constructed by using COMSOL software, and an experimental study of elastic wave propagation in concrete with cracks was carried out to systematically investigate the relationship between the characteristics of concrete cracks (angle of cracks, depth of cracks, distance of cracks from the sound source, and the number of cracks, etc.) and the propagation of elastic waves. Results It is found that the numerical simulation results are in good agreement with the experimental phenomena, verifying the reliability of the numerical model. Among the factors, the number of cracks and the distance of cracks from the sound source have a significant impact on the echo peak value, with the echo peak value of cracks 2 cm from the sound source being the largest at 3.46×106 Pa. The factor that has the greatest impact on wave speed and signal damage is the depth of cracks, where the damage rate of cracks with a depth of 60 mm is as high as 62.14%, and the wave speed attenuates to 2 590.674 m/s, followed by the number of cracks, with the signal damage rate reaching 31.28%. Based on the change law of wave speed for different crack features, a regression analysis of the wave speed relationship model for crack angle and depth showed that the goodness of fit is high, with R2 values greater than 0.95. Conclusions In summary, the existence and characteristics of cracks in concrete have a significant impact on elastic wave propagation. This study quantifies the impact of crack characteristics on elastic wave propagation in concrete through numerical simulation, providing theoretical support for non-destructive testing technology of concrete.
Key words:crack morphology;echo peak;wave speed signal;damage;crack depth