供稿: 张明军, 陈烁, 王鑫波, 杨江涛, 刘河龙, 吕耀威, 李德辉, 于明博 | 时间: 2024-07-31 | 次数: |
张明军, 陈烁, 王鑫波,等.纵扭超声辅助铣削SiCp/Al复合材料表面质量研究[J].河南理工大学学报(自然科学版),2024,43(5):96-107.
ZHANG M J, CHEN S, WANG X B,et al.Study on the surface quality of SiCp/Al composite materials by longitudinal-torsional ultrasonic assisted milling[J].Journal of Henan Polytechnic University(Natural Science) ,2024,43(5):96-107.
纵扭超声辅助铣削SiCp/Al复合材料表面质量研究
张明军, 陈烁, 王鑫波, 杨江涛, 刘河龙, 吕耀威, 李德辉, 于明博
河南理工大学 机械与动力工程学院,河南 焦作 454000
摘要:高体积分数SiCp/Al复合材料具有高比强度、高比模数和良好的耐磨性等优异性能。然而,它们的高硬度和脆性会导致精密制造过程中应力分布更为复杂,这会使材料中产生过大的力和过多的热,从而影响加工精度和工件耐久极限寿命。 目的 通过分析切削过程中颗粒的去除机理和表面缺陷类型,利用纵扭超声辅助铣削(longitudinal-torsional ultrasonic assisted milling,LTUAM) 技术,改善高体积分数SiCp/Al复合材料的加工表面质量。 方法 利用ABAQUS和PYTHON软件,建立考虑颗粒断裂过程的两相随机分布颗粒SiCp/Al复合材料模型,并采用Johnson-Cook模型和Brittle Cracking模型对SiCp/Al复合材料纵扭超声辅助铣削过程进行有限元模拟仿真。针对不同加工参数,进行SiCp/Al复合材料纵扭超声辅助铣削和常规铣削(conventional milling ,CM)试验,评估有限元仿真模拟与试验结果的一致性。 结果 模拟结果表明,损伤和裂纹主要产生在SiC颗粒(SiCp)中上部的切削线上,凹坑缺陷主要产生在颗粒下部的切削线上。试验结果显示,表面缺陷的类型主要包括颗粒的损伤和拔出、颗粒的损伤和断裂形成凹坑、未损伤的颗粒形成凸起、破损颗粒与刀具在已加工表面上挤压摩擦形成犁沟、铝基体涂覆、表面微裂纹和表面空穴等,并且当加工速度120 m/min,超声振幅3 μm时,最大裂纹深度最小,表面缺陷最小,表面质量最好。 结论 对比有限元仿真结果与试验结果发现,二者的表面质量变化趋势基本具有一致性。纵扭超声辅助铣削技术的应用对提高SiCp/Al复合材料的表面质量有较好效果。
关键词:SiCp/Al复合材料;有限元仿真;超声加工;表面质量;硬脆材料
doi:10.16186/j.cnki.1673-9787.2024030047
基金项目:国家自然科学基金资助项目(51675164);河南理工大学自然科学基金资助项目(B2020-28);河南省科技攻关项目(232102311185)
收稿日期:2024/03/17
修回日期:2024/04/30
出版日期:2024/07/31
Study on the surface quality of SiCp/Al composite materials by longitudinal-torsional ultrasonic assisted milling
ZHANG Mingjun, CHEN Shuo, WANG Xinbo, YANG Jiangtao, LIU Helong, LYU Yaowei, LI Dehui, YU Mingbo
School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
Abstract:High volume fraction SiCp/Al composites have excellent properties such as high specific strength,high specific modulus and good wear resistance.However,their high hardness and brittleness can lead to complex stress distributions in the precision manufacturing process,which can lead to excessive force and heat and thus affect the accuracy and durability limits. Objectives By analyzing the removal of particles and the types of surface defects in the cutting process,the longitudinal-torsional ultrasonic assisted milling (LTUAM) technology was used to improve the surface quality of high volume fraction SiCp/Al composites. Methods ABAQUS and PYTHON software were used to establish a model of two-phase randomly distributed SiCp/Al composites considering the fracture process of particles.The Johnson-Cook model and the Brittle Cracking model were used to simulate the longitudinal-torsional ultrasonic assisted milling process of SiCp/Al composites using finite element method.For different machining parameters,the longitudinal-torsional ultrasonic assisted milling and conventional milling (CM) tests of SiCp/Al composites were carried out to evaluate the consistency between the finite element simulation and the test results. Results The simulation results showed that the damage and cracks mainly occurred on the cutting line in the middle and upper part of SiC particles,and the pitting defects mainly occured on the cutting line in the lower part of SiC particles.The test results showed that the types of surface defects mainly included particle damage and pulling out,particle damage and fracture forming pits,undamaged particles forming bumps,damaged particles and tools forming furrows on the machined surface by extrusion friction,aluminum matrix coating,surface micro-cracks and surface holes,and so on.Moreover,when the processing speed was 120 m/min and ultrasonic amplitude was 3 μm,the maximum crack depth was the smallest, the surface defect was the smallest and the surface quality was the best. Conclusions Comparing the finite element simulation results with the experimental results,it was found that the surface quality change trend of the two was basically consistent. The application of longitudinal-torsional ultrasonic assisted milling technology had a good effect on improving the surface quality of SiCp/Al composites.
Key words:SiCp/Al composite material;finite element simulation;ultrasonic machining;surface quality;hard and brittle material