>> 自然科学版 >> 网络首发 >> 正文
基于多源传感监测的大型尾矿库溃坝物理模拟及冲击影响研究
供稿: 刘勇锋,张超 时间: 2025-06-12 次数:

刘勇锋,张超. 基于多源传感监测的大型尾矿库溃坝物理模拟及冲击影响研究[J].河南理工大学学报(自然科学版),doi:10.16186/j.cnki.1673-9787.2025030071

LIU Y F,ZHANG C.Physical simulation and impact analysis of large-scale tailings dam rreach Based on multi-dource densing monitoring[J].Journal of Henan Polytechnic University( Natural Science),doi:10.16186/j.cnki.1673-9787. 2025030071

基于多源传感监测的大型尾矿库溃坝物理模拟及冲击影响研究(网络首发)

刘勇锋1,2,张超3

(1.重庆大学 资源与安全学院,重庆 400044;2.深圳市中金岭南有色金属股份有限公司,广东 深圳  518024;3.中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室,湖北 武汉,430071)


摘要: [目的] 为了探究尾矿库溃坝过程中孔隙水压力、土压力演化规律和尾砂流冲击特性。[方法] 以广东某大型尾矿库为原型,基于几何相似比1∶100构建室内物理模型,集成孔隙水压传感器、土压传感器、三目相机及PIV系统开展溃坝试验。[结果] 结果表明:(1)孔隙水压力呈现“蓄水阶段阶梯上升、溃决阶段骤降、消散阶段缓慢降低”的三阶段演化特征,坝体附近孔压消散速率较库尾快40%;(2)溃流量与泥沙瞬时剥离量呈非线性正相关,最大溃流量达240万m³,溃口峰值流速2.6 m/s;(3)下泄尾砂流流速分布受地形粗糙度控制,沟道中部流速呈“驼峰形”,泄流量增大时演变为“双驼峰形”,垂直沟道流速符合“中间快、两侧慢”特征,涡量峰值与地形粗糙度正相关。[结论] 研究提出的“双驼峰流速模型”为尾矿库溃坝风险评估及下游防护工程设计提供了新方法,成果可为高势能尾矿库安全防控提供理论依据与技术支撑。

关键词: 尾矿坝;物理模拟;多源传感监测;溃流动力学;双驼峰流速模型

中图分类号:TV649.1

doi: 10.16186/j.cnki.1673-9787.2025030071

基金项目: 国家重点研发计划项目(2023YFC3012200)

收稿日期:2025-03-29

修回日期:2025-05-28

网络首发日期:2025-06-12


Physical simulation and impact analysis of large-scale tailings dam reach Based on multi-dource densing monitoring

Liu Yongfeng1,2,Zhang Chao3

(1.College of Resources and Safety Engineering, Chongqing University,Chongqing 400044;2.Shenzhen Zhongjin Lingnan Nonferrous Metals Co., Ltd.,Shenzhen Zhongjin Lingnan Nonferrous Metals Co., Ltd.;3.State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences,Wuhan 430071, Hubei)


Abstract: [Objective] To investigate the evolution mechanisms of pore water pressure, earth pressure, and the impact characteristics of tailings flow during dam breach. [Methods] a 1:100 scaled physical model was constructed based on a large valley-type tailings reservoir in Guangdong, China. Multi-source sensing technologies, including pore water pressure sensors, earth pressure sensors, trinocular cameras, and PIV systems, were integrated to monitor the breaching process. [Results] The results demonstrate: (1) Pore water pressure exhibits a three-phase evolution pattern: "stepwise increase during impoundment, sharp decline during breaching, and gradual dissipation," with a 40% faster dissipation rate near the dam body compared to the reservoir tail; (2) Breach flow shows a nonlinear positive correlation with sediment stripping amount, reaching a peak flow of 2.4 million m³ and a maximum velocity of 2.6 m/s at the breach; (3) Downstream tailings flow velocity distribution is controlled by terrain roughness, presenting a "hump-shaped" profile in central channels that transitions to a "double-hump" pattern under increased discharge, while vertical velocity gradients follow a "fast center, slow sides" characteristic, with vorticity peaks positively correlated with roughness. [Conclusion] The proposed "double-hump velocity model" provides a novel methodology for tailings dam risk assessment and downstream protection design, offering critical technical support for the safety management of high-potential-energy tailings reservoirs.

Key words: tgailings dam; physical simulation; multi-source sensing monitoring; breach flow dynamics; double-hump velocity model

CLC:

最近更新