| 时间: 2025-11-05 | 次数: |
李成杰,黄森,陈保光,等.基于生命周期评价的城市污水处理碳足迹分析与评价[J].河南理工大学学报(自然科学版), doi: 10.16186/j.cnki.1673-9787.2025080038.
LI C J, HUANG S, CHEN B G, et al. Carbon footprint analysis and assessment of municipal wastewater treatment based on life cycle assessment [J]. Journal of Henan Polytechnic University(Natural Science), doi: 10.16186/j.cnki.1673-9787.2025080038.
基于生命周期评价的城市污水处理碳足迹分析与评价
李成杰1,2,黄森3,陈保光4,赵爱平5,郭晓明1,2,姜凤成1,2,王明仕1,2
(1.河南理工大学 资源环境学院,河南 焦作 454000;2.河南省煤系非常规资源成藏与开发重点实验室,河南 焦作 454000;3.中国船级社质量认证有限公司,北京 100006;4.威泰普科技有限公司,河南 郑州 450041;5.康达环保(焦作)水务有限公司,河南 焦作 454000)
摘要: 目的 针对现有污水处理碳足迹研究中忽略污水中化石源有机碳经活性污泥法生物处理产生的CO₂排放和缺乏减碳路径全生命周期综合评估的问题,进行生命周期评价的城市污水处理碳足迹分析与评价研究。 方法 构建碳足迹核算模型,识别典型A/A/O(厌氧/缺氧/好氧)工艺污水处理厂全流程关键碳排放环节,提出系统性减排路径,并以典型污水处理厂为例,采用生命周期评价法,建立初级处理、生化处理、深度处理和污泥处理4个单元过程,运用eFootprint软件,参照CLCD、Ecoinvent数据库中数据,核算碳足迹。创新性纳入污水中化石源有机碳经活性污泥法生物处理产生的CO₂的核算,基于一年实际运行数据,通过敏感性分析识别关键影响因子。 结果 全厂碳足迹为5.11×10⁻¹ kgCO₂e/m³。该污水处理厂4个单元过程的碳足迹排序为:生化处理>污泥处理>深度处理>初级处理,其中生化处理和污泥处理合计占比73%,是主要碳排放单元。从清单类型看,碳足迹占比排序为电耗>物耗>污染物排放>直接排放,电耗和物耗为核心影响因素,间接排放合计占比82%。 结论 构建的碳足迹核算模型纳入了化石源CO₂排放,明确了生化处理和污泥处理为关键减排单元,电耗和物耗为核心管控对象。据此提出短期通过设备能效提升、运行优化和低成本材料替代,长期通过工艺升级、智能控制和能源结构优化的短长期协同减排方案,为污水处理厂碳减排提供可操作路径。
关键词: 生命周期评价;污水处理;碳足迹;碳排放;减碳路径;单元过程分析
中图分类号:X24;TK09
doi: 10.16186/j.cnki.1673-9787.2025080038
基金项目: 国家自然科学基金资助项目(41502241);河南省重点研发专项(241111320400);河南省重点研发与推广专项(科技攻关)项目(252102321066);河南省一流本科课程(豫教[2121]21962);河南理工大学“非标准答案”考试改革专题研究项目(FBZDA-1024194);河南理工大学校级课程思政项目(KCSZ-KC24193)
收稿日期:2025-07-22
修回日期:2025-09-20
网络首发日期:2025-11-05
Carbon footprint analysis and assessment of municipal wastewater treatment based on life cycle assessment
Li Chengjie1,2, Huang Sen3, Chen Baoguang4, Zhao Aiping5, Guo Xiaoming1,2,
Jiang Fengcheng1,2, Wang Mingshi1,2
(1. School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China; 2. Henan Key Laboratory of Coal Measure Unconventional Resources Accumulation and Exploitation, Jiaozuo 454000, Henan, China; 3. China Classification Society Quality Certification Co., Ltd. (CCSC), Beijing 100006, 4. Witep Tech Co., Ltd., Zhengzhou 450041, Henan, China; 5. Kangda Environmental Protection (Jiaozuo) Water Co., Ltd., Jiaozuo 454000, Henan, China)
Abstract: Objectives The present study addresses gaps in existing wastewater treatment carbon‑footprint research—namely the omission of CO₂ emissions originating from fossil‑derived organic carbon in influent wastewater that are released during biological treatment by activated sludge, and the lack of comprehensive life‑cycle–level evaluation of carbon‑reduction pathways. We develop an improved carbon‑accounting model to identify the key emission sources across the full process of representative A/A/O (anaerobic/anoxic/aerobic) wastewater treatment plants, and we propose integrated, system‑level mitigation strategies. Methods Taking a typical wastewater treatment plant as an example, a life cycle assessment (LCA) method was applied to establish a system encompassing four unit processes: primary treatment, biological treatment, advanced treatment, and sludge treatment. Using the eFootprint software along with the CLCD and Ecoinvent databases, the carbon footprint was quantified. A novel aspect included the accounting of CO₂ emissions derived from fossil-origin organic carbon in wastewater during biological treatment via the activated sludge process. Based on one year of actual operational data, a sensitivity analysis was conducted to identify key influencing factors. Results The total plant carbon footprint was found to be 5.11×10⁻¹ kg CO₂e/m³. The carbon footprint of the four unit processes was ranked as follows: biological treatment> sludge treatment > advanced treatment> preliminary treatment. Biological and sludge treatment together accounted for 73% of the total, identifying them as the primary carbon emission units. From an inventory perspective, the contributions were ranked: electricity consumption>material consumption>pollutant emissions>direct emissions. Electricity and material consumption were the core influencing factors, with indirect emissions collectively accounting for 82%. Conclusions Based on the carbon footprint accounting model constructed in this study, which incorporates fossil-derived CO₂ emissions, biochemical treatment and sludge treatment have been identified as the key units for emission reduction, with electricity consumption and material consumption being the primary focuses for management. Accordingly, short- and long-term coordinated emission reduction strategies are proposed: short-term measures include improving equipment energy efficiency, optimizing operational processes, and adopting low-cost material alternatives; long-term strategies involve process upgrades, implementing intelligent control systems, and optimizing the energy mix. This approach provides actionable pathways for carbon emission reduction in wastewater treatment plant.
Key words:life cycle assessment (lca); wastewater treatment; carbon footprint; carbon emissions; carbon mitigation pathways; unit process analysis
CLC: X24;TK09