>> 自然科学版期刊 >> 2025 >> 2025年03期 >> 正文
微波热诱导沥青混合料内部升温机理研究
供稿: 吴文亮, 彭俊霖, 李智 时间: 2025-04-18 次数:

吴文亮, 彭俊霖, 李智.微波热诱导沥青混合料内部升温机理研究[J].河南理工大学学报(自然科学版),2025,44(3):164-171.

WU W L, PENG J L, LI Z.Numerical study on the internal heating mechanism of asphalt mixtures under microwave thermal induction[J]. Journal of Henan Polytechnic University(Natural Science) , 2025, 44(3): 164-171.

微波热诱导沥青混合料内部升温机理研究

吴文亮, 彭俊霖, 李智

华南理工大学 土木与交通学院,广东 广州510641

摘要: 目的 微波热诱导技术只能依据结构表面温度对诱导效果进行测量与评价,微波对结构内部诱导作用机理尚不明确。 方法 为探讨此机理,首先采用COMSOL有限元数值模拟方法,通过各项材料的电磁参数计算沥青混合料整体的电磁参数,进行电磁热耦合有限元数值分析,分析微波在正方体试件内部的电场强度分布规律,推断微波对沥青路面结构内部温度变化的诱导机理;然后,结合微波热诱导环境中正方体沥青混合料试件表面温度变化受诱导时间影响的变化情况加以验证,阐明不同级配的沥青混合料结构内部在微波热诱导环境下的升温规律和温度分布均匀性。  结果 结果表明,不同矿料的吸波性能可以通过其耗散能量的能力进行评价,辉绿岩在微波热诱导作用下比其他石料的吸波性能更优异。经过有限元数值模拟,各级配辉绿岩沥青混合料结构内部在动态微波热诱导环境下加热200 s,结构整体平均温度达到80 °C以上,满足混合料内部细小裂缝的愈合温度需求。  结论 以辉绿岩为骨架的沥青混合料在微波热诱导200 s以内即可升温至80 °C,满足内部结构裂缝的愈合要求,能够更高效利用微波热诱导愈合技术,防止沥青混合料中的裂缝发展成坑槽、松散等功能性病害。

关键词:微波热诱导;数值仿真;COMSOL;辉绿岩;诱导机理

doi: 10.16186/j.cnki.1673-9787.2023110060

基金项目:国家自然科学基金资助项目(51378223)

收稿日期:2023/11/30

修回日期:2024/02/22

出版日期:2025-04-18

Numerical study on the internal heating mechanism of asphalt mixtures under microwave thermal induction

WU Wenliang, PENG Junlin, LI Zhi

School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510641, Guangdong, China

Abstract: Objectives In engineering applications, microwave thermal induction techniques are typically evaluated based on surface temperature measurements, while the mechanism of microwave-induced heating within the structure remains unclear.  Methods To investigate this mechanism, COMSOL-based finite element simulation was employed. The overall electromagnetic parameters of asphalt mixtures were derived from those of individual materials, and an electromagnetic-thermal coupled finite element analysis was conducted. This approach enabled the analysis of the internal electric field intensity distribution within cubic specimens, from which the mechanism of internal temperature rise induced by microwaves was inferred. The simulation results were further validated by examining the surface temperature variations of asphalt specimens under different microwave induction durations. Additionally, the study clarified the internal temperature distribution patterns and uniformity of asphalt mixtures with different gradations under microwave induction.  Results The microwave-absorbing performance of various aggregates can be evaluated by their energy dissipation capabilities. Among them, diabase exhibited superior microwave absorption compared to other aggregates. The numerical simulations showed that when subjected to microwave induction for 200 seconds, diabase-based asphalt mixtures across different gradations reached an average internal temperature exceeding 80 °C, meeting the thermal requirements for healing microcracks.  Conclusions Asphalt mixtures with diabase as the aggregate skeleton can be efficiently heated to above 80 °C within 200 seconds under microwave induction, satisfying the conditions necessary for internal crack healing. This indicates a high potential for applying microwave-induced healing technology to prevent the development of functional distresses such as potholes and raveling in asphalt pavements.

Key words: microwave thermal induction; numerical simulation; COMSOL; diabase;induction mechanism

最近更新