供稿: 文广超, 王一博, 冯雅杰, 周彦斌, 张一帆, 赵梦余 | 时间: 2025-04-18 | 次数: |
文广超, 王一博, 冯雅杰,等.煤矿井下三维透明地质环境建设探索[J].河南理工大学学报(自然科学版),2025,44(3):71-80.
WEN G C, WANG Y B, FENG Y J ,et al. Exploration on the construction of a transparent 3D geological environment in underground coal mine[J]. Journal of Henan Polytechnic University(Natural Science) , 2025, 44(3): 71-80.
煤矿井下三维透明地质环境建设探索
文广超1, 王一博1, 冯雅杰2, 周彦斌1, 张一帆1, 赵梦余1
1.河南理工大学 资源环境学院,河南 焦作 454000;2.吉林大学 地球探测科学与技术学院 吉林 长春 130015
摘要: 目的 为推进智慧矿山建设,保障掘进条件可视、可预、可控,实现煤炭安全精准回采, 方法 基于矿井钻探、物探、测绘、观测等相关数据,以地质学和地统计学为基础,考虑煤矿井下地质要素特征,综合运用数据标准化、三维建模、可视化表达、统计分析等技术手段,从煤矿井下地质要素三维建模与可视化、断层识别与可视化、井巷工程可视化3个方面开展研究。建立矿井地质大数据中心,制定煤矿井下透明地质环境动态可视化建设方案;构建三维地质动态模型,实现关键地质体及工作面透明化;提出基于钻孔、地形、剖面、井巷等数据的隐伏小断层识别方法,建立小断层识别模型,实现小断层自动识别及可视化;自主研发矿井地质环境三维可视化平台,并对以上成果进行案例验证, 结果 结果表明,地质要素三维可视化结果与实际揭露情况吻合较好,可以反映岩层、煤层、断层的空间展布特征,实现了煤矿井下地质环境的实时动态更新,能够较为准确地识别3 m以下小断层。 结论 研究结果可为煤矿安全生产提供技术支撑。
关键词:煤矿;三维可视化;透明地质;地质环境;钻孔
doi:10.16186/j.cnki.1673-9787.2024110013
基金项目:国家自然科学基金资助项目(42402182);河南省科技攻关计划项目(232102321098)
收稿日期:2024/11/07
修回日期:2025/01/09
出版日期:2025-04-18
Exploration on the construction of a transparent 3D geological environment in underground coal mine
WEN Guangchao1, WANG Yibo1, FENG Yajie2, ZHOU Yanbin1, ZHANG Yifan1, ZHAO Mengyu1
1.School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China;2.College of Geoexploration Science and Technology, Jilin University, Changchun 130015, Jilin, China
Abstract: Objectives In order to promote the construction of intelligent mines, ensure the visibility, predictability, and controllability of excavation conditions, and achieve safe and accurate coal mining, Methods this study was carried out from three aspects, 3D modeling and visualization of geological elements underground in coal mines, fault identification and visualization, and visualization of roadway engineeringbased on relevant data such as from mine drilling, geophysical exploration, surveying, and observation. It took geology and geostatistics as the basis, consided the characteristics of geological elements underground in coal mines, and comprehensively used technical methods such as data standardization, 3D modeling, visualization expression, and statistical analysis. The study aimed to establish a mine geological big data center, design a real-time visualization construction plan for transparent underground geological conditions, and develop a dynamic 3D geological model to achieve transparency of key geological bodies and coal mining faces. It presented a novel methodology for detecting concealed minor faults by integrating borehole, topographic, geological profiles, tunnels and other data. A small fault identification model was developed to facilitate automatic fault recognition and 3D visualization of small faults. A self-developed 3D visualization platform for mine geological environments was constructed, and case studies were conducted to validate the aforementioned achievements. Results The results showed that the 3D visualization of geological elements has a good agreement with the actual exposure situation, which can reflect the spatial distribution characteristics of rock layers, coal seams, and faults, and achieve real-time dynamic updates of the geological environment underground in coal mines, and can accurately identify small faults below 3 m. Conclusions The research results can provide technical support for coal mine safety production.
Key words: coal mine; 3D visualization; transparent geology; geology environment; boreholes