供稿: 王海涛, 陈国强, 王耿 | 时间: 2025-04-18 | 次数: |
王海涛, 陈国强, 王耿.一种三级放大柔顺压电微夹钳的设计与测试[J].河南理工大学学报(自然科学版),2025,44(3):147-155.
WANG H T, CHEN G Q, WANG G. Design and test of a three-stage amplifying flexible piezoelectric microgripper[J]. Journal of Henan Polytechnic University(Natural Science) , 2025, 44(3): 147-155.
一种三级放大柔顺压电微夹钳的设计与测试
王海涛1, 陈国强2, 王耿2,3
1.河南理工大学 建筑与艺术设计学院,河南 焦作 454000;2.河南理工大学 机械与动力工程学院,河南 焦作 454000;3.西南科技大学 制造科学与工程学院,四川 绵阳 621010
摘要: 目的 为了研制一种可实现大行程、高固有频率、力/位移同时精确可控的高性能压电微夹钳, 方法 基于三级柔顺放大原理,提出一种新颖的压电微夹钳设计和研制方案。首先,分析压电微夹钳三级柔顺机构位移放大倍数的计算方法、静力学特性和动力学特性的理论结果;其次,通过有限元仿真对压电微夹钳静力学特性和动力学进行检验;最后,在对该微夹钳原型实验装置标定的基础上,对其进行放大比测试和谐振频率测试,并对夹持力和钳指位移进行开闭环精确跟踪实验。 结果 基于开环跟踪实验可得,微夹钳的实际放大倍数为18.41倍,在频率为0.1 Hz、幅值为100 V正弦电压驱动下,微夹钳的最大输出位移为112.3 μm,最大夹持力为130.1 mN;基于闭环跟踪实验可知,微夹钳的动态性能良好,钳指位移的均方根误差为0.61 μm,夹持力跟踪的均方根误差为0.88 mN。 结论 上述结果表明,所设计的微夹钳不仅具有较高的行程放大能力、高固有频率,而且可以对钳指位移和夹持力进行有效地精密跟踪。与开环相比,设计的微夹钳在闭环跟踪条件下能有效抑制系统的低频操作非线性特性,使力和位移跟踪误差显著减小,但是适用于高频跟踪的先进控制方法仍是未来需要继续研究的方向。
关键词:压电驱动器;微夹钳;迟滞非线性;闭环控制;柔顺机构
doi: 10.16186/j.cnki.1673-9787.2023060020
基金项目:国家自然科学基金资助项目(51505133);河南省科技攻关计划项目(212102210045);四川省重点研发计划项目(23ZDYF0471);西南科技大学科学研究基金资助项目(22zx7140)
收稿日期:2023/06/06
修回日期:2024/02/28
出版日期:2025-04-18
Design and test of a three-stage amplifying flexible piezoelectric microgripper
WANG Haitao, CHEN Guoqiang2, WANG Geng2,3
1.School of Architecture and Artistic Design, Henan Polytechnic University, Jiaozuo 454000, Henan, China;2.School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China;3.School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
Abstract: Objectives In order to develop a high performance piezoelectric microgripper with large stroke, high natural frequency and precise control of force/displacement, Methods a novel design and development scheme of piezoelectric microgripper was proposed based on the principle of three-stage compliant amplification. Firstly, the calculation method of the displacement magnification of the three-stage compliant mechanism and the theoretical results of its static and dynamic characteristics were analyzed. Secondly, the static and dynamic characteristics were tested by finite element simulation. Then, on the basis of calibration of the prototype experimental device of the microgripper, the magnification ratio and resonant frequency were tested, and the open/closed loop accurate tracking experiments were carried out on the clamping force and the displacement of the clamp finger. Results Finally, based on the open-loop tracking experiment, the actual magnification of the micro clamp is 18.41. The maximum output displacement of the microgripper is 112.3 μm and the maximum holding force is 130.1 mN when the frequency of sinusoidal voltage is 0.1 Hz and the amplitude is 100 V. Based on the closed-loop tracking experiment, it can be seen that the dynamic performance of the microgripper is excellent. The root mean square error of the finger displacement of the microgripper is 0.61 μm, and the root mean square error of the clamping force tracking is 0.88 mN. Conclusions The above results show that the designed microgripper not only has high stroke magnification ability and high natural frequency, but also can track the finger displacement and clamping force effectively. Compared with open-loop tracking, the designed microgripper can effectively suppress the nonlinear characteristics of low frequency operation of the system under the closed-loop tracking condition, and significantly reduce the tracking errors of force and displacement. However, advanced control method suitable for high-frequency tracking is the direction that needs to be continued research in the future.
Key words: piezoelectric actuator; microgripper; hysteretic nonlinearity; closed-loop control; compliant mechanism