供稿: 胡圣武 | 时间: 2018-11-21 | 次数: |
作者:胡圣武
作者单位:河南理工大学测绘与国土信息工程学院
摘要:为控制和消弱空间数据质量语言评价的不确定性、模糊性和正确确定权重,使其评价结果定量化和科学化,引入Vague集理论对不确定性语言进行量化,利用属性区分度来确定权重,用正理想方案距离进行空间数据质量评价。结果表明,基于Vague集和属性区分度的评价结果,能反映评价者对空间数据质量信息认识的模糊性和不确定性,正确确定各指标权重,更能表征实际空间数据质量,增加客观性减少主观性,结果更加科学化,以为空间数据质量定性评价提供了一种参考方法。
基金:国家自然科学基金委员会-河南省人才培养联合基金资助项目(U1304401);
关键词:空间数据质量;属性区分度;正理想方案距离;Vague集;不确定语言;
DOI:10.16186/j.cnki.1673-9787.2017.01.011
分类号:P208
Abstract:In order to control and reduce spatial data quality evaluation of language fuzziness and uncertainty,correctly determine weight and make evaluation results quantitative and scientific,Vague set is adopted to quantity uncertainty of language,and attribute discrimination to determine weight,and distance of positive ideal solution is used to carry out spatial data quality evaluation. The research results show that it reflects fuzziness and uncertainty of spatial data quality information understanding,can correctly determine weight of each index,evaluation results can more reflect actual spatial data quality; and can increase objectivity and reduce subjectivity so as to make evaluation results scientific,based on Vague set and attribute discrimination. The results of this study can provide a reference method to the spatial data quality evaluation.