>> 自然科学版期刊 >> 2016年01期 >> 正文
基于马尔科夫链误差修正的光伏发电预测
供稿: 段俊东;薛静杰;栗维冰 时间: 2018-11-19 次数:

作者:段俊东;薛静杰;栗维冰

作者单位:河南理工大学电气工程与自动化学院

摘要:为了提高光伏发电预测的精度,在传统BP神经网络预测模型的基础上,利用相似日算法和马尔科夫链理论对预测模型进行改进。其方法以得到的相似日数据作为预测模型的输入量,通过BP神经网络进行训练,得到初步的预测值,然后根据马尔科夫链模型得到的误差状态转移概率矩阵对预测误差进行修正,根据修正后的误差得到新的预测值。最后通过与传统算法得到的预测结果进行误差对比分析,结果表明,改进算法的预测精度高于传统算法,验证了该模型的有效性。

关键词:光伏发电;相似日算法;BP神经网络;马尔科夫链;

DOI:10.16186/j.cnki.1673-9787.2016.01.019

分类号:TM615

Abstract:In order to improve the accuracy of photovoltaic power generation prediction,a new BP neutral network power forecasting model is developed based on the principle of similar day and Markov chain. Using the similar day data as the input of the forecast model,the error correction date can be obtained based on the Markov chain model,and the preliminary forecast data can be attained through BP neural network training.According to the error correction date the new forecast date can be gotten. At last,by comparing the results obtained by traditional algorithm,it is shown that the improved algorithm of prediction accuracy is higher than that of traditional algorithm,verifying the effectiveness of the proposed model.

最近更新