>> 自然科学版 >> 当期目录 >> 正文
侧壁凹槽结构微通道流动与换热特性
时间: 2025-03-05 次数:

朱崎峰, 崔阳, 赵同乐,.侧壁凹槽结构微通道流动与换热特性[J].河南理工大学学报(自然科学版),2025,44(2):99-107.

ZHU Q F, CUI Y, ZHAO T L,et al.Flow and heat transfer characteristics of microchannel with grooves structure on sidewalls[J].Journal of Henan Polytechnic University(Natural Science) ,2025,44(2):99-107.

侧壁凹槽结构微通道流动与换热特性

朱崎峰1,2, 崔阳1, 赵同乐1, 温小萍1, 孙好雷2, 和文强1

1.河南理工大学 机械与动力工程学院,河南 焦作  4540002.河南新飞制冷器具有限公司 技术研发中心,河南 新乡  453004

摘要: 目的 为探究凹槽形状对微通道热沉内液体流动与换热性能的影响,寻找适用于微通道流动减阻和强化传热的最优凹槽几何结构,以提高微通道热沉的冷却效率,   方法 通过试验测试不同体积流量下去离子水在扇形凹槽结构微通道、水滴形凹槽结构微通道和梯形凹槽结构微通道内的进出口压力降和温升,采用流动摩擦因子、平均努塞尔数、强化传热因子和场协同数评价不同微通道内液体强制对流的流动和换热性能,并与光滑微通道的性能进行对比。   结果 随着体积流量增加,微通道内液体流动压降、平均努塞尔数和强化传热因子增大,流动摩擦因子、进出口温差和场协同数则相应减小,表明微通道内液体流动的泵耗功率增大,但其对流换热性能和换热效率却均得到显著提升;3种凹槽结构内液体流动压降和平均摩擦因子均小于光滑微通道,降低了流动的泵耗功率;在液体流量较大时,水滴形凹槽结构微通道和梯形凹槽结构微通道的换热性能和换热效率均优于光滑微通道;扇形凹槽结构微通道的换热性能和换热效率最好,其平均努塞尔数和综合强化传热因子最高分别达到7.811.32   结论 研究结果为改进微通道设计以解决超大规模集成电路芯片冷却问题提供了参考。 

关键词:微通道;凹槽;传热;努塞尔数

doi:10.16186/j.cnki.1673-9787.2022050041

基金项目:国家自然科学基金资助项目(51774115);河南省科技攻关项目(212102210001222102320105);河南理工大学博士基金资助项目(B2015-41);国家大学生创新创业训练计划项目(202210460059

收稿日期:2022/05/12

修回日期:2023/09/07

出版日期:2025-03-05

Flow and heat transfer characteristics of microchannel with grooves structure on sidewalls

ZHU Qifeng1,2, CUI Yang1, ZHAO Tongle1, WEN Xiaoping1, SUN Haolei2, HE Wenqiang1

1.School of Mechanical and Power Engineering Henan Polytechnic University Jiaozuo  454000 Henan China2.Technology Research and Development Center Henan Xinfei Refrigeration equipment Co. Ltd. Xinxiang  453004 Henan China

Abstract: Objectives In order to explore the effects of grooves shape on the liquid flow and heat transfer performances in microchannel heat sinkMCHS), find an optimal groove geometry that can provide an efficient cooling performance with heat transfer enhancement as well as microchannel flow drag reduction Methods an experimental study was carried out to test the fluid pressure and temperature at the microchannel inlet and outlet. The flow friction factor average Nusselt number enhanced heat transfer factor and field synergy number were used to evaluate the forced convection flow and heat transfer performances of the deionized water in the fan-shaped grooved microchannel water droplet grooved microchannel and trapezoidal grooved microchannel. Furthermore a comparison of the flow and heat transfer performances of the grooved microchannel heat sinks with that of the smooth one was promoted.  Results With the increase of volume flow rate the liquid flow pressure dropped average Nusselt number and enhanced heat transfer factor increased while the flow friction factor temperature increment and field synergy number decreased accordingly indicating that the pump power consumption of the liquid flow in microchannels increasesd but its convective heat transfer performance and heat transfer efficiency were significantly improved. The liquid flow pressure drop and friction factor of the grooved microchannel are respectively lower than that of the smooth one promoting a reduction in the pump power consumption. When the liquid flow rate was large the heat transfer performance and heat transfer efficiency of the water droplet grooved microchannel and trapezoidal grooved microchannel were better than that of the smooth one. The heat transfer performance and heat transfer efficiency of the fan-shaped grooved microchannel were the best and the corresponding average Nusselt number and enhanced heat transfer factor achieved up to 7.81 and 1.32 respectively.   Conclusions This research results could provide a reference for improving microchannel design to solve the cooling problem of very large scale integrated VLSI chips. 

Key words:microchannel;groove;heat transfer;Nusselt number

最近更新