时间: 2024-01-02 | 次数: |
李益敏,向倩英,邓选伦,等. 基于优化 MaxEnt 模型的怒江州滑坡易发性评价[J]. 河南理工大学学报(自然科学版),doi:10.16186/j.cnki.1673-9787.2023070010.
LI Y M,XIANG Q Y,DENG X L,et al. Evaluation of landslide susceptibility in Nujiang prefecture based on optimized MaxEnt model[J].Journal of Henan Polytechnic University( Natural Science) ,doi:10.16186/j.cnki.1673-9787.2023070010.
基于优化MaxEnt模型的怒江州滑坡易发性评价(网络首发)
李益敏1,2,向倩英3,邓选伦1,冯显杰3
1.云南大学 地球科学学院,云南 昆明 650500;2.云南大学 云南省高校国产高分卫星遥感地质工程研究中心,云南 昆明 650500;3.云南大学 国际河流与生态安全研究院,云南 昆明 650500
摘要: 目的 怒江州是典型的高山峡谷地区,地质灾害(滑坡)频发,严重制约着当地的发展,为解决这一问题,方法 综合考虑怒江州实际情况,从气象水文、地形地貌、地层岩性、植被生态和人类活动5个方面选取坡向、高程等14 个影响因子判断相关性,构建评价指标体系,对最大熵(MaxEnt)模型的特征类(feature combination,FC)和正则化乘数(regularization multiplier,RM)参数进行优化,对比优化前后小样本赤池信息量准则(akaike information criterion,AICc)、遗漏率(omission rate,OR)和AUC(area under curve)值,然后基于优化的最大熵(MaxEnt)模型预测滑坡灾害的发生,实现怒江州滑坡易发性评价。结果 结果表明:优化后的 MaxEnt 模型在研究区滑坡易发性预测中适用性优秀(AUC=0.913);运用刀切法(Jackknife)计算各影响因子对易发性的影响程度,高程(S3,23.2%)、坡度(S9,22.4%)、居民点密度(S5,14.2%)、距河流距离(S13,13.7%)、距道路距离(S4,9.6%)和岩性(S7,8.7%)是位列前六的因子,累计贡献度达91.8%;极高、高、中、低滑坡易发性等级的空间占比分别为 4.88%,8.96%,18.40%,67.76%,县域中极高和高易发区占比最大的是泸水市,整体上,极高、高易发区主要沿河流和道路分布于峡谷中,低易发区主要分布于人类活动少、河谷不发育的区域。结论 优化后的 MaxEnt模型更适合怒江州滑坡易发性预测,研究结果可为怒江州防灾减灾与土地利用规划提供参考。
关键词: 怒江州;最大熵(MaxEnt)模型;滑坡;易发性
中图分类号:P694
doi:10.16186/j.cnki.1673-9787. 2023070010
基金项目: 国家自然科学基金资助项目(41161070);云南省科技厅-云南大学联合基金重点资助项目(2019FY003017);云南大学大湄公河次区域气候变化研究省创新团队项目(2019HC027);中国地质调查局项目(DD20221824)
收稿日期:2023/07/06
修回日期:2023/09/14
网络首发日期:2024/01/02
Evaluation of landslide susceptibility in Nujiang prefecture based on optimized MaxEnt model
LI Yimin1,2,XIANG Qianying3,DENG Xuanlun1,FENG Xianjie3
1.School of Earth Sciences,Yunnan University,Kunming 650500,Yunnan,China;2.Yunnan University Engineering Research Center of High-resolution Satellite Remote Sensing,Yunnan University,Kunming 650500,Yunnan,China;3.Institute of International Rivers and Ecological Security,Yunnan University,Kunming 650500,Yunnan,China
Abstract: Objective Nujiang Prefecture is a typical alpine canyon area.Landscape geological disasters are frequent,which seriously restricts local development.It is urgent to carry out sensitive evaluation.Methods Comprehensively considering the actual situation of Nujiang Prefecture,14 influencing factors such as slope direction and elevation were selected from five aspects of meteorology and hydrology,topography and geomorphology,stratigraphic lithology,vegetation ecology and human activities to judge the correlation,build an evaluation index system,and analyze the MaxEnt model feature combination(FC) and regularization multiplier (RM) parameters were optimized,and the akaike information criterion(AICc),Omission Rate(OR) and AUC(area under curve) value,and then based on the optimized MaxEnt model to predict the occurrence of landslide hazards,to realize the sensitivity evaluation of landslide in Nujiang Prefecture.Results The optimized MaxEnt model was suitable for landslide sensitivity prediction(AUC=0.913).Jackknife method was used to calculate the influence degree of each influencing factor on sensitivity,such as elevation(S3,23.2%),slope(S9,22.4%),settlement density(S5,14.2%),distance from river(S13,13.7%),distance from road(S4,9.6%) and lithology(S7,8.7%) is the top six factors,with a cumulative contribution of 91.8%;The spatial proportions of extremely high,high,medium and low landslide susceptibility levels were 4.88%,8.96%,18.40% and 67.76%,respectively.The highest proportion of extremely high and high susceptibility areas was found in Lushui City.On the whole,extremely high and high susceptibility areas were mainly distributed in valleys along rivers and roads,while low susceptibility areas were mainly distributed in areas with little human activities and undeveloped river valleys.Conclusion The optimized MaxEnt model is more suitable for landslide sensitivity prediction in Nujiang Prefecture,and the research results can provide reference for disaster prevention and reduction and land use planning in Nujiang Prefecture.
Key words: Nujiang State;maximum entropy(MaxEnt)model;landslide;susceptibility
CLC:P694