供稿: 翟亚飞,宋志宇,田志锋,金俊超,刘光昆 | 时间: 2024-04-19 | 次数: |
翟亚飞,宋志宇,田志锋,等.基于粘弹-塑性模型的地下结构动力响应影响因素研究[J].河南理工大学学报(自然科学版),doi:10.16186/j.cnki.1673-9787.2024010018.
ZHAI Y F,SONG Z Y,TIAN Z F,et al.Study on influencing factors of dynamic response of underground structures based on viscoelastic-plastic model[J].Journal of Henan Polytechnic University(Natural Science),doi:10.16186/j.cnki.1673-9787.2024010018.
基于粘弹-塑性模型的地下结构动力响应影响因素研究(网络首发)
翟亚飞1,2,宋志宇1,2,田志锋1,2,3,金俊超1,2,刘光昆1,2
(1.黄河勘测规划设计研究院有限公司,河南 郑州 450003;2.水利部黄河流域水治理和水安全重点实验室(筹),河南 郑州 450003;3.大连理工大学,海岸与近海工程国家重点实验室,辽宁 大连 116024)
摘要: 目的 在强震作用下,土体往往表现出较强的非线性动力特性,导致土中结构物损伤加剧。为探讨考虑分层土体非线性的地动输入方法及地下结构动力响应影响因素, 方法 在地震动输入方面,结合前人的研究成果,提出了能够合理模拟层状地基地震动输入方法,实现了对土体各深度位置材料参数的迭代更新,能够反映实际土体参数的空间分布特征。在土体结构动力分析上,将土体等效线性模型嵌套至Mohr-coulomb模型,建立粘弹-塑性模型,给出了考虑土体非线性特性的分层土体-结构整体模型地震响应分析流程。以某工程为例,进行土体-结构非线性地震响应分析,研究埋深和土层参数对地下结构抗震性能的影响。 结果 结果表明:在静动荷载作用下,随着结构埋深增加,结构顶底相对位移差值逐渐减小。在相同的埋深工况下,与剪力响应相比,地震作用引起的动弯矩占比较大;保持地表加速度时程不变,结构内力响应随土层剪切模量的增大而逐渐减小。 结论 对于双层地下结构,地震作用引起的上层中柱剪力和弯矩响应较大,在结构抗震设计时应对此有所考虑。此外,在软土质环境下的地下结构设计中,应特别关注结构的动弯矩响应,并采取有效的加固措施。
关键词:层状地基;地震动输入;非线性;地下结构;埋深;土层参数
doi:10.16186/j.cnki.1673-9787.2024010018
基金项目: 国家重点研发计划(2021YFB2600703),中国博士后科学基金(2022M721299)
收稿日期:2024-01-04
修回日期:2024-03-21
网络首发日期:2024-04-19
Study on influencing factors of dynamic response of underground structures based on viscoelastic-plastic model(Online)
ZHAI Yafei1,2,SONG Zhiyu1,2,TIAN Zhifeng1,2,3,JIN Junchao1,2,LIU Guangkun1,2
(1.Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003; 2.Key Laboratory of Water Management and Water Security for Yellow river Basin of Ministry of Water resources ( under construction),Zhengzhou 450003;3.Dalian University of Technology, State Key Laboratory of Coastal and Offshore Engineering, Dalian 116024)
Abstract: Objectives Under strong seismic actions, soil often exhibits strong nonlinear dynamic characteristics, leading to exacerbated damage to structures within the soil. To explore methods for incorporating the nonlinear behavior of layered soil into seismic inputs and the influencing factors on the dynamic response of underground structures. Methods In terms of seismic input, building upon previous research findings, a method has been proposed that can effectively simulate layered soil seismic input, achieving iterative updates of material parameters at various depths within the soil. This method can reflect the spatial distribution characteristics of actual soil parameters. In the dynamic analysis of soil-structure interaction, the soil equivalent linear model is nested within the Mohr-Coulomb model to establish a viscoelastic-plastic model. This provides a seismic response analysis procedure for a layered soil-structure system considering the nonlinear properties of the soil. Using a specific engineering project as an example, nonlinear seismic response analysis of the soil-structure system is conducted to study the influence of burial depth and soil parameters on the seismic performance of underground structures. Results The results indicate that under static and dynamic loads, as the burial depth of the structure increases, the relative displacement difference between the top and bottom of the structure gradually decreases. Under the same burial depth conditions, seismic actions induce a greater proportion of dynamic bending moment compared to shear force responses. Additionally, maintaining the same ground acceleration time history, the internal force response of the structure gradually decreases with the increase of soil shear modulus. Conclusions In general, seismic forces result in notable shear and bending moment responses in the upper layer columns of double-layered underground structures, necessitating careful consideration in structural seismic design. Additionally, when designing underground structures in soft soil environments, it's crucial to focus on the dynamic bending moment responses of the structures and implement effective reinforcement measures.
Key words: layered foundation; seismic input; non linear; underground structure; burial depth; soil parameters