>> 自然科学版期刊 >> 2020 >> 2020年06期 >> 正文
一种基于GPU的枚举排序算法及其并行化
供稿: 谷国太;孙陆鹏;张红艳;肖汉 时间: 2020-11-11 次数:

谷国太, 孙陆鹏, 张红艳,.一种基于GPU的枚举排序算法及其并行化[J].河南理工大学学报(自然科学版),2020,39(6):139-143.

GU G T, SUN L P, ZHANG H Y, et al.An enumeration sorting algorithm based on GPU and it' s parallelization[J].Journal of Henan Polytechnic University(Natural Science) ,2020,39(6):139-143.

一种基于GPU的枚举排序算法及其并行化

谷国太1, 孙陆鹏2, 张红艳2, 肖汉2

1.河南省新闻出版学校,河南 郑州 450044;2.郑州师范学院 信息科学与技术学院,河南 郑州 450044

摘要:针对枚举排序算法在处理大规模数据时存在运算量大、计算时间长、计算效率低等问题,提出一种利用GPU并行运算提升大规模数据处理速度的方法。在CUDA下对枚举排序算法进行串-并行分析,分别从细粒度与粗粒度角度进行优化,根据CPUGPU的结构特点优化排序数据的读取和存储方式,内核采用一个GPU线程对应一次比较操作的计算方法,以充分利用GPU计算能力。实验结果表明,当排序数据规模大于40 000时,在GPU上的运算速度比在CPU上快3倍左右,并且随着数据规模的不断增大,加速比越来越大。研究结果对于提升大规模数值计算效率具有重要的意义。

关键词:枚举排序;图形处理器;并行计算;数据处理;性能优化

doi:10.16186/j.cnki.1673-9787.2020.6.20

基金项目:国家自然科学基金资助项目(61572444);河南省高等学校重点科研项目(16A520031

收稿日期:2020/01/16

修回日期:2020/03/26

出版日期:2020/11/15

An enumeration sorting algorithm based on GPU and it' s parallelization

GU Guotai1, SUN Lupeng2, ZHANG Hongyan2, XIAO Han2

1.Henan Press and Publishing School Zhengzhou  450044 Henan China;2.School of lnformation Science and Technology Zhengzhou Normal University Zhengzhou  450044 HenanChina

Abstract:In order to solve the problems of large amount of computation long computing time and low computational efficiency when enumeration sorting is used to deal with large amounts of data a method of using GPU parallel operation to improve the processing speed was proposed. Under the condition of CUDA the enumeration sorting algorithm was analyzed in series-parallel and optimized from the point of view of fine-grained and coarse-grained respectively. According to the structural characteristics of CPU and GPU the reading and storage mode of data to be sorted was optimized. The kernel used a GPU thread corresponding to a experimental. The results showed that when the size of the dataset to be sorted was larger than 40 000 the operation speed on GPU is about 3 times faster than that on CPU. And with the continuous increase of the data scale the speedup was getting larger and larger. This study was of practical significance for large-scale numerical calculation.

Key words:enumeration sorting;graphic processing unit;parallel computing;data processing;performance optimization

  一种基于GPU的枚举排序算法及其并行化_谷国太.pdf

最近更新