供稿: 李坤;王潜心;闵扬海;龚佑兴;苗伟;程彤 | 时间: 2022-05-10 | 次数: |
李坤, 王潜心, 闵扬海,等.附有周期项的二次多项式LASSO钟差预报模型[J].河南理工大学学报(自然科学版),2022,41(3):74-80.
LI K, WANG Q X, MIN Y H, et al.A clock offset prediction model with quadratic polynomial based on LASSO algorithm[J].Journal of Henan Polytechnic University(Natural Science) ,2022,41(3):74-80.
附有周期项的二次多项式LASSO钟差预报模型
李坤1, 王潜心1, 闵扬海2, 龚佑兴3, 苗伟1, 程彤1
1.中国矿业大学 环境与测绘学院,江苏 徐州 221116;2.苏州市房地产市场与交易管理中心,江苏 苏州 215002;3.国防科学技术大学 指挥军官基础教育学院,湖南 长沙 410072
摘要:为了解决最小二乘估计(least squares estimation , LSQ)算法在处理高维度数据模型式时易产生模型过拟合、预报精度不高等问题,采用LASSO算法(least absolute shrinkage and selection operator)对附有周期项的二次多项式模型进行整体求解,分析6,12,18,24 h预报精度。结果表明,LASSO算法能有效避免模型参数求解的过拟合问题,极大提高二次多项式模型的预报精度,随着预报时间增加,LASSO算法优势愈加明显。
关键词:二次多项式;周期项;LASSO;最小二乘估计;过拟合
doi:10.16186/j.cnki.1673-9787.2020090051
基金项目:国家自然科学基金资助项目(41874039);江苏省自然科学基金资助项目(BK20191342)
收稿日期:2020/09/11
修回日期:2020/11/03
出版日期:2022/05/15
A clock offset prediction model with quadratic polynomial based on LASSO algorithm
LI Kun1, WANG Qianxin1, MIN Yanghai2, GONG Youxing3, MIAO Wei1, CHENG Tong1
1.School of Environment and Geoinformatics , China University of Mining and Technology, Xuzhou 221116 , Jiangsu, China;2.Suzhou Real Estate Market and Transaction Management Center, Suzhou 215002 , Jiangsu, China;3.School of Military Commanding Officer Basic Education,National University of Defense Technology,Changsha 410072,Hunan,China
Abstract: In order to solve the problems of model over-fitting and low prediction accuracy of the least squares estimation (LSQ) in processing high-dimensional data model formulas,the LASSO algorithm was used to solve the overall model of the quadratic polynomial model with periodic terms , and 6 ,12 ,18,24 h accuracy analysis of the prediction experiment respectively was carried out. The result showed that the LASSO algorithm could effectively avoid the over-fitting phenomenon in the solution of model parameters , greatly improve the prediction accuracy of the quadratic polynomial, and as the prediction time increased,the advantages of the lasso algorithm increased obviously.
Key words:quadratic polynomial;period term;LASSO;least squares estimation;over-fitting
附有周期项的二次多项式LASSO钟差预报模型_李坤.pdf