| 时间: 2025-10-14 | 次数: |
张艳利, 杨明, 戚灵灵,等.基于微震监测的底板隔水层采动破坏规律研究[J].河南理工大学学报(自然科学版),2025,44(6):110-117.
ZHANG Y L, YANG M, QI L L,et al. Study on mining-induced failure mechanism of the floor aquifuge based on microseismic monitoring[J].Journal of Henan Polytechnic University(Natural Science) ,2025,44(6):110-117.
基于微震监测的底板隔水层采动破坏规律研究
张艳利1,2, 杨明3,4, 戚灵灵3, 郝殿5, 王春霞6
1.河南省煤矿充填减沉工程技术研究中心,河南 焦作 454150;2.河南工业和信息化职业学院,河南 焦作 454000;3.河南理工大学 安全科学与工程学院,河南 焦作 454000;4.河南理工大学 郑州高等研究院,河南 郑州 451464;5.焦作煤业集团有限责任公司 科学技术研究所,河南 焦作 454002;4.六盘水师范学院 矿业与土木工程学院,贵州 六盘水 553004
摘要: 目的 为了探讨煤层底板隔水层采动破坏规律,保证工作面安全开采,开展基于微震监测的底板隔水层采动破坏规律研究。 方法 以赵固一矿16001工作面为研究背景,采用微震监测、数值模拟等方法分析工作面回采过程中底板隔水层的破坏特征。 结果 结果表明:底板隔水层垂向上具有明显的分层破坏特征,其中底板下≥0~10 m为“全面采动破坏层位”,具有超前性,即超前破坏占主导;底板下≥10~15 m为“局部采动破坏层位”,具有滞后性,即滞后破坏占主导;底板下≥15 m为“点状采动破坏层位”,主要表现为受地质构造影响下的采动破坏;采用微震能量核密度分析法计算得到16001工作面底板破坏深度,为15~20 m,最大破坏位置位于回采区域内工作面的中部,底板隔水关键岩层为L9灰岩下伏的粉砂岩层,数值模拟计算出的底板破坏深度结果与微震监测结果基本吻合。 结论 研究结果揭示了承压水上大采高工作面底板采动破坏规律,可为矿井底板突水治理提供参考依据。
关键词:承压水;隔水层;破坏特征;微震监测;滞后破坏;数值模拟
doi:10.16186/j.cnki.1673-9787.2024120026
基金项目:国家自然科学基金资助项目(52274186)
收稿日期:2024/12/12
修回日期:2025/06/10
出版日期:2025/10/14
Study on mining-induced failure mechanism of the floor aquifuge based on microseismic monitoring
Zhang Yanli1,2, Yang Ming3,4, Qi Lingling3, Hao Dian5, Wang Chunxia6
1.Henan Coal Mine Filling and Settlement Reduction Engineering Technology Research Center, Jiaozuo 454150, Henan, China;2.Henan College of Industry & Information Technology, Jiaozuo 454000, Henan, China;3.School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China;4.Zhengzhou Institute for Advanced Research of Henan Polytechnic University, zhengzhou 451464, Henan, China;5.Institute of Science and Technology, Jiaozuo Coal Industry Group Co., Ltd, Jiaozuo 454002, Henan, China;6.School of Mining and Civil Engineering, Liupanshui Normal University, Liupanshui 553004, Guizhou, China
Abstract: Objectives To investigate the mining-induced failure characteristics of the floor aquifuge and ensure safe working face extraction, a study on the failure patterns of the floor aquifuge based on micro seismic monitoring was conducted. Methods With the 16001 working face in Zhaogu No.1 Mine as the research background, micro seismic monitoring and numerical simulation were employed to analyze the failure characteristics of the floor aquifuge during coal mining. Results The floor aquifuge exhibited distinct stratified failure characteristics in the vertical direction: the 0~10 m interval beneath the floor was identified as a “full mining-induced damage zone" dominated by advance failure; the 10~15 m interval corresponded to a "partial mining-induced damage zone”" dominated by delayed failure; and depths beyond 15 m formed a “sporadic mining-induced damage zone” influenced mainly by geological structures. Kernel density analysis of micro seismic energy indicated that the floor failure depth in the 16001 working face ranged from 15 to 20 m, with maximum damage occurring in the central mining area. The key water-resistant stratum was identified as the siltstone underlying the L9 limestone. Numerical simulation results showed good agreement with micro seismic monitoring data regarding floor failure depth. Conclusions The findings reveal the mining-induced floor failure patterns in large mining-height working faces above confined aquifers, providing theoretical support for the prevention and control of mine floor water inrush.
Key words: confined water; floor aquifuge; failure characteristics; microseismic monitoring; delayed failure; numerical simulation