| 时间: 2025-10-14 | 次数: |
牛海萍, 潘瑞凯, 于伟东, 等.复杂结构煤层煤柱力学特性分析与巷道围岩稳定性优化研究[J].河南理工大学学报(自然科学版),2025,44(6):118-126.
NIU H P, PAN R K, YU W D,et al. Mechanical characteristics of coal pillars in complex-structure coal seams and optimization of roadway surrounding rock stability[J].Journal of Henan Polytechnic University(Natural Science) ,2025,44(6):118-126.
复杂结构煤层煤柱力学特性分析与巷道围岩稳定性优化研究
牛海萍1, 潘瑞凯1, 于伟东1, 沈玉旭1,2, 吴少康3
1.山西能源学院 矿业工程系,山西 晋中 030600;2.太原理工大学 原位改性采矿教育部实验室, 山西 太原 030244;3.中国矿业大学(北京) 能源与矿业学院,北京 100083
摘要: 目的 为解决复杂结构煤层综放工作面回采时巷道围岩破坏严重、稳定性差等问题,以豹子沟煤矿10103工作面为研究对象,探讨巷道围岩应力作用下复杂结构煤层煤柱的破坏机理。 方法 综合运用现场实测、力学分析、数值模拟和现场试验等方法,深入剖析复杂结构煤层煤柱的力学特性和围岩稳定性优化策略。 结果 推导出复杂结构煤层煤柱理论尺寸计算公式,确定的最佳护巷煤柱宽度为5.66~7.04 m;揭示了复杂结构煤层采动影响下,煤柱塑性区深度为常规煤层的2.8倍,证实夹矸层对围岩应力重分布过程的调控作用;明确了煤柱垂直应力、垂直位移、水平应力和水平位移的演化规律,得出7 m工作面煤柱留设宽度可有效增强巷道围岩稳定性,证实了理论计算的正确性。将所得最佳煤柱尺寸应用于现场,回采期间巷道在采取措施前后效果显著。 结论 增加煤柱宽度虽能提升承载能力,但过宽会导致煤柱内部应力在采空区一侧过度集中,危及整体稳定性。研究结果对复杂结构煤层开采煤柱的合理设计与应用具有重要指导意义,为该领域提供了新的理论依据与实践参考。
关键词:复杂结构煤层;煤柱尺寸;力学模型;应力演化规律;围岩稳定性
doi:10.16186/j.cnki.1673-9787.2025010009
基金项目:国家自然科学基金资助项目(52204102);山西省基础研究资助项目(202103021223392);山西省自然科学基金资助项目(20210302124489)
收稿日期:2025/01/06
修回日期:2025/06/17
出版日期:2025/10/14
Mechanical characteristics of coal pillars in complex-structure coal seams and optimization of roadway surrounding rock stability
Niu Haiping1, Pan Ruikai1, Yu Weidong1, Shen Yuxu1,2, Wu Shaokang3
1.Department of Mining Engineering, Shanxi University of Energy, Jinzhong 030600, Shanxi, China;2.Ministry of Education Laboratory of Insitu Modified Mining, Taiyuan University of Technology, Taiyuan 030244, Shanxi, China;3.School of Energy and Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
Abstract: Objectives To address the problems of severe roadway surrounding damage and poor stability during mining of complex-structure coal seams, the failure mechanism of coal pillars under roadway stress was investigated, taking the 10103 face of Baozigou Coal Mine as a case study. Methods Field measurement, mechanical analysis, numerical simulation, and field tests were employed to investigate the mechanical characteristics of coal pillars in complex-structure coal seams and to develop optimization strategies for roadway surrounding rock stability. Results A theoretical calculation formula for coal pillar size in complex-structure coal seams was derived, and the optimum roadway-protective coal pillar width was determined to be 5.66~7.04 m. It was revealed that the plastic zone depth of coal pillars under mining influence is 2.8 times that of conventional coal seams, confirming the regulatory effect of interlayers on the stress redistribution process of surrounding rock. The evolution laws of vertical stress, vertical displacement, horizontal stress, and horizontal displacement were clarified, and a coal pillar width of 7 m was found to effectively enhance roadway surrounding rock stability, verifying the theoretical results. Field application of the optimum pillar size showed remarkable improvement in roadway conditions before and after implementation. Conclusions Increasing coal pillar width enhances bearing capacity, but excessive width leads to stress concentration on the goaf side, endangering overall stability. The results provide significant guidance for the rational design and application of coal pillars in complex-structure coal seam mining, offering new theoretical and practical references for the field.
Key words: complex-structure coal seam; coal pillar size; mechanical model; stress evolution law; surrounding rock stability