>> 自然科学版期刊 >> 2023 >> 2023年02期 >> 正文
基于面向对象结合随机森林模型的Sentinel-2A影像耕地信息提取
时间: 2023-03-10 次数:

赵士肄, 闫金凤, 杜佳雪.基于面向对象结合随机森林模型的Sentinel-2A影像耕地信息提取[J].河南理工大学学报(自然科学版),2023,42(2):55-61.

ZHAO S Y, YAN J F, DU J X.Sentinel-2A image cultivated land information extraction based on object-oriented and random forest model[J].Journal of Henan Polytechnic University(Natural Science) ,2023,42(2):55-61.

基于面向对象结合随机森林模型的Sentinel-2A影像耕地信息提取

赵士肄, 闫金凤, 杜佳雪

山东科技大学 测绘与空间信息学院,山东 青岛266590

摘要:为了更快、更准确地提取耕地信息,以山东省青岛市莱西市夏格庄镇为研究区,利用Sentinel-2A影像融合光谱特征、遥感指数特征、纹理特征和形状特征等31个特征变量,设计4种耕地信息提取方案,采用结合面向对象的随机森林(Random ForestRF)分类模型提取耕地信息,并基于相同分类条件,与传统机器学习分类方法对比,评价模型的优适性。结果表明:结合所有分类特征变量的方案4耕地提取效果最佳,其中旱地提取精度高达99.6%,大棚提取精度达88.4%5种分类方法中,结合面向对象的RF模型耕地提取精度最高,减弱了分类结果的椒盐现象,优化了分类结果。

关键词:面向对象;耕地信息提取;随机森林;遥感

doi:10.16186/j.cnki.1673-9787.2020100046

基金项目:国家自然科学基金资助项目(41890854);山东省重大科技创新工程项目(2019JZZY020103

收稿日期:2020/10/21

修回日期:2020/12/10

出版日期:2023/03/25

Sentinel-2A image cultivated land information extraction based on object-oriented and random forest model

ZHAO Shiyi, YAN Jinfeng, DU Jiaxue

College of Geodesy and GeomaticsShandong University of Science and TechnologyQingdao 266590ShangdongChina

Abstract:Taking Xiagezhuang TownLaixi CityQingdao CityShandong Province as the study areausing Sentinel-2A imagery as the data sourceintegrating 31 feature variables including spectral featuresremote sensing index featurestexture features and shape featuresand designing four types of cultivated land information extraction in the schemean object-oriented random forestRandom ForestRF classification model was used to extract farmland information.Based on the same classification conditionsa comparative experiment with traditional machine learning classification methods was carried out to evaluate the suitability of the model.The results showed thatScheme 4which combined all the classification feature variableshad the best cultivated land extraction effect.The dryland extraction accuracy was as high as 99.6%and the greenhouse extraction accuracy was 88.4%.Among the five classification methodsthe object-oriented RF model had the highest extraction accuracy for cultivated land.The "salt and pepper" phenomenon of the classification result was weakenedand the classification result was optimized.

Key words:object-oriented;cultivated land information extraction;Random Forest;remote sensing

 008_2020100046_赵士肄_H.pdf

最近更新