>> 自然科学版 >> 网络首发 >> 正文
功能梯度石墨烯增强自旋圆柱壳的振动特性
供稿: 王宇,徐自强,李昊,王鹏,徐宏达,张颖 时间: 2023-11-29 次数:

王宇, 徐自强, 李昊,.功能梯度石墨烯增强自旋圆柱壳的振动特性[J].河南理工大学学报(自然科学版),doi:10.16186/j.cnki.1673-9787.2023030066

WANG Y, XU Z Q, LI H,et al.The vibration performance of the rotating FG-GPLRC cylindrical shell[J].Journal of Henan Polytechnic University(Natural Science) ,doi:10.16186/j.cnki.1673-9787.2023030066

功能梯度石墨烯增强自旋圆柱壳的振动特性(网络首发)

王宇, 徐自强, 李昊, 王鹏, 徐宏达, 张颖

辽宁科技大学 机械工程与自动化学院,辽宁 鞍山 114051

摘要:为了研究功能梯度石墨烯增强(FG-GPLRC)自旋圆柱壳的振动特性,基于Halpin-Tsai微观力学 模型与复合材料夹杂理论预测石墨烯增强结构的等效材料属性,采用一阶剪切变形理论推导FG-GPLRC 旋圆柱壳的能量表达式,通过Rayleigh-Ritz法对FG-GPLRC自旋圆柱壳的行波振动特性进行分析,得到 动力学方程进而求解出行波频率并验证结果的准确性。结果表明:10层结构可实现对FG-GPLRC自旋圆 柱壳特性的预测,石墨烯片质量分数可显著提高行波频率;GPL-X分布模式下行波频率最高,而GPL-O 分布模式最低,行波频率随转速的提高而增大;弹性边界条件下,行波频率随轴向半波数的增大而增加。

 关键词: 石墨烯增强材料;Rayleigh-Ritz法;自旋圆柱壳;Halpin-Tasi微观力学模型;弹性边界

中图分类号:O327

doi:10.16186/j.cnki.1673-9787.2023030066

基金项目:国家自然科学基金资助项目(51775257); 辽宁省教育厅高校科研基金资助项目(LJKMZ20220637

收稿日期:2023-03-27

修回日期:2023-08-10

网络首发日期: 2023-11-29

The vibration performance of the rotating FG-GPLRC cylindrical shellOnline

WANG Yu, XU Ziqiang, LI Hao, WANG Peng, XU Hongda, ZHANG Ying

School of Mechanical Engineering and Automation University of Science and Technology Liaoning Anshan 114051 Liaoning China

Abstract:In order to study the vibration characteristics of the functionally graded graphene platelets reinforced composite FG-GPLRC rotating cylindrical shell the equivalent material properties of the graphene-reinforced structure were predicted based on the Halpin-Tsai micromechanical model and the composite inclusion theory and the energy expression of the FG-GPLRC rotating cylindrical shell was derived using the first-order shear deformation theory. The traveling wave vibration characteristics of FG-GPLRC rotating cylindrical shell were analyzed by Rayleigh-Ritz method and the kinetic equation was obtained. Then the traveling wave frequency was solved and the accuracy of the results was verified. The results show that the characteristics of the FG-GPLRC rotating cylindrical shell can be predicted in the 10-layer structure and the traveling wave frequency can be significantly improved by the mass fraction of graphene platelets. In GPL-X mode downlink wave frequency was the highest while in GPL-O mode traveling wave frequency increased with the increase of rotational speed. Under elastic boundary conditions the frequency of traveling wave increased with the increase of axial half wave number.

Key words:functionally gradient graphene-reinforced material;Rayleigh-Ritz method;rotating cylindrical shellHalpin-Tsai micromechanical modelelastic boundary

CLCO327

 

最近更新