>> 自然科学版 >> 网络首发 >> 正文
稀土镁合金轧制成形研究进展
供稿: 徐志超,熊峰,杨文举,杨文朋,于合帅,杨政鹏 时间: 2024-09-09 次数:

徐志超,熊峰,杨文举,等.稀土镁合金轧制成形研究进展[J].河南理工大学学报(自然科学版),doi:10.16186/j.cnki.1673-9787.2024060023.

XU Z C, XIONG F, YANG W J, et al. Research progress on rolling forming of rare earth magnesium alloys[J].Journal of Henan Polytechnic University( Natural Science), doi:10.16186/j.cnki.1673-9787.2024060023.

稀土镁合金轧制成形研究进展(网络首发)

徐志超1,熊峰1,杨文举1,杨文朋2,于合帅1,杨政鹏1

(1.河南理工大学 材料科学与工程学院,河南 焦作 454000;2.河南省高性能轻金属材料及其数值模拟国际联合实验室,河南 焦作 454000)

摘要: 目的 稀土元素由于其独特的化学和物理特性,在镁合金合金化方面受到特别关注,稀土镁合金以较高强度著称,但其基体内的众多缺陷给后续加工带来了巨大挑战。轧制工艺因其能有效提高合金综合性能,可实现镁合金连续化生产而受到广泛关注,但高稀土含量镁合金在轧制过程中容易出现边裂且其强度和塑性难以同时提升。为深入了解稀土镁合金轧制变形的影响因素,探索优异的稀土镁合金轧制工艺,方法 本文综述了近年来稀土镁合金轧制方面的研究进展,介绍了不同轧制工艺下稀土镁合金组织演变及性能变化,同时,论述了当前稀土镁合金轧制工艺的优缺点,对未来稀土镁合金轧制的研究方向进行了展望。结果 近年来采用同步轧制、衬板轧制和电塑性轧制等工艺对稀土镁合金进行研究,得到了高强韧性镁合金,为无边裂或少边裂的镁合金板材的生产奠定了基础。但目前稀土镁合金轧制工艺仍以同步轧制为主,且多数轧制工艺难以同时提升强度与塑性,部分轧制工艺通过再结晶来提高成形性能,但降低了强度。大变形轧制通过晶粒显著细化、高密度位错导致强度提高。但高密度位错和强基面织构等将导致塑性降低。结论 目前对稀土镁合金的同步轧制工艺已有较为系统的研究,但仍需进一步探索合金化以及优异的轧制工艺参数来改善合金性能。此外,稀土镁合金的先进轧制技术研究较少,且多数研究关注于合金的组织和性能优化,未深入研究其组织演化、强化机制以及变形机制,后续需全面的研究先进轧制技术下稀土镁合金的变形机制。

关键字稀土镁合金;轧制工艺;成形性能;织构;力学性能

doi: 10.16186/j.cnki.1673-9787.2024060023.

基金项目: 国家自然科学基金(52103290);河南省重点研发与推广专项(242102230050);河南省高等学校青年骨干教师培养计划(2023GGJS056);河南省高校基本科研业务费专项资金资助(NSFRF210333);河南理工大学青年骨干教师资助计划(2020XQG-16)

收稿日期:2024-06-13

修回日期:2024-08-07

网络首发日期:2024-09-09

Research Progress on Rolling Forming of Rare Earth Magnesium Alloys

XU Zhichao1, XIONG Feng1, YANG Wenju1, YANG Wenpeng2, YU Heshuai1, YANG ZhengPeng1

(1.Department of Material Science & Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China;2.International laboratory of High Performance Light Metal Materials and Numerical Simulation of Henan, Jiaozuo 454000, Henan, China

AbstractObjectives Rare earth elements have received special attention in magnesium alloying due to their unique chemical and physical properties. Rare earth magnesium alloys are well known for their high strength, but the numerous defects in their matrix pose huge challenges to subsequent processing. The rolling process has attracted widespread attention because it can effectively improve the comprehensive performance of the alloy and realize the continuous production of magnesium alloys. However, high-rare earth content magnesium alloys are prone to edge cracking during the rolling process, and their strength and plasticity are difficult to improve at the same time. To better understand the factors influencing the rolling deformation of rare earth magnesium alloys and investigate better rolling technology for rare earth magnesium alloys. Methods This paper reviews the research progress in rare earth magnesium alloy rolling in recent years and introduces the microstructure evolution and property changes of rare earth magnesium alloys under different rolling processes. Meanwhile, the advantages and disadvantages of the current rare earth magnesium alloy rolling process are discussed, and the future research direction of rare earth magnesium alloy rolling is prospected. Results In recent years, rare earth magnesium alloys have been studied using processes such as synchronous rolling, Hard-plate rolling, and Electroplastic rolling, resulting in high-strength and tough magnesium alloys that lay the foundation for the production of magnesium alloy sheets with no or few edge cracks. However, the current rare earth magnesium alloy rolling process is still dominated by synchronous rolling, and most rolling processes make it difficult to improve both strength and plasticity at the same time. Some rolling processes improve the forming performance through recrystallization but reduce the strength. Large deformation rolling results in increased strength through significant grain refinement and a high density of dislocations. However, the high density of dislocations and strong basal texture will lead to reduced plasticity. Conclusions At present, there has been a relatively systematic study on the synchronous rolling process of rare earth magnesium alloys, but further exploration of alloying and more appropriate rolling process parameters are still needed to improve the alloy properties. In addition, there are few studies on advanced rolling technology of rare earth magnesium alloys, and most studies focus on the optimization of the alloy's structure and performance, without in-depth research on its organizational evolution, strengthening mechanism and deformation mechanism. A comprehensive study of the deformation mechanism of rare earth magnesium alloys under advanced rolling technology is needed in the future.

Key words: rare earth magnesium alloy; rolling process; forming performance; texture; mechanical properties

最近更新