>> 自然科学版 >> 网络首发 >> 正文
静态致裂作用下采煤工作面端头悬顶破断演化机理研究
供稿: 静态致裂作用下采煤工作面端头悬顶破断演化机理研究(网络首发) 袁瑞甫,李辉,董卓,张群磊 时间: 2025-04-24 次数:

袁瑞甫李辉董卓,等. 静态致裂作用下采煤工作面端头悬顶破断演化机理研究[J].河南理工大学学报(自然科学版),doi:10.16186/j.cnki.1673-9787.2024120020

YUAN R FLI HDONG Z,et al. Study on failure evolution mechanism of ends hanging roof under static fracturing[J].Journal of Henan Polytechnic University(Natural Science),doi:10.16186/j.cnki.1673-9787.2024120020

静态致裂作用下采煤工作面端头悬顶破断演化机理研究(网络首发)

袁瑞甫1,2,3,李辉1,2,董卓1,张群磊1

1. 河南理工大学 能源科学与工程学院,河南 焦作 454000;2. 煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作454000;3. 河南理工大学 郑州高等研究院, 河南 郑州 451464


摘要: [目的] 为了揭示采场端头悬顶破断演化机理并实现合理矿压控制,探究悬顶破断静态致裂破坏规律及最佳钻孔间距,[方法] 利用连续-非连续单元方法(CDEM)建立采场端头悬顶破断数值模型,分析悬顶破断静态致裂破坏规律;基于某矿5-2煤层实际地质条件建立工作面端头区域地层数值模型,探究开挖过程中静态致裂前后悬顶变形、破断过程,揭示静态破碎剂作用下悬顶破断演化机理。[结果] 结果表明:静态破碎剂膨胀压力与悬顶抗拉强度呈正比,当抗拉强度低于8 MPa且膨胀压力≥30 MPa时可实现最佳致裂效果;悬顶致裂钻孔间距最佳间距为1.25 m;静态致裂前工作面端头悬顶周期垮落步距为37.5 ~ 22.5 m,平均步距27.5 m,而静态致裂后周期垮落步距减少至17 ~ 12 m;开采工作面支架压力与顶板位移现场测试结果进一步表明静态致裂技术的可行性。。[结论] 静态致裂技术通过控制悬顶垮落步距与破裂顺序,可有效避免矿压突变带来的安全隐患,研究结果可以为静态致裂技术致裂坚硬顶板工程提供理论指导。

关键词: 端头悬顶;静态致裂;切顶卸压;数值模拟;破断机理

中图分类号:TD322

doi: 10.16186/j.cnki.1673-9787.2024120020

基金项目: 国家自然科学基金资助项目(52174109);河南省高校科技创新团队支持计划资助(22IRTSTHN005);河南省科技攻关资助项目(232102321128)

收稿日期:2024-12-09

修回日期:2025-04-24

网络首发日期:2025-04-24


Study on failure evolution mechanism of ends hanging roof under static fracturing


YUAN Ruifu1,2,3LI Hui1,2DONG Zhuo1ZHANG Qunlei1

(1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China; 2. State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo 454000, Henan, China; 3. Zhengzhou Institute for Advanced Research of Henan Polytechnic University, Zhengzhou 451464, Henan, China)


Abstract: [Objective] To reveal the failure evolution mechanism of end-hanging roofs in mining faces and achieve rational mine pressure control, and to explore the static fracturing failure mechanism of end-hanging roofs and the optimal drilling spacing. [Methods] A numerical model of end-hanging roof failure was established using the Continuous-Discontinuous Element Method (CDEM) to analyze the static fracturing failure mechanism. A numerical model of the strata in the end area of the working face was constructed based on the geological conditions of the 5-2 coal seam in a specific mine to investigate the deformation and breakage process of the end-hanging roof before and after static fracturing during excavation, revealing the failure evolution mechanism under the action of static cracking agents. [Results] The results show that the expansion pressure of the static cracking agent is proportional to the tensile strength of the end-hanging roof. When the tensile strength is below 8 MPa and the expansion pressure is 30 MPa, the optimal fracturing effect is achieved. The optimal drilling spacing for fracturing the end-hanging roof is 1.25 m. Before static fracturing, the periodic caving step distance of the end-hanging roof at the working face ranges from 37.5 m to 22.5 m, with an average step distance of 27.5 m. After static fracturing, the caving step distance range reduces to approximately 17 m to 12 m. On-site tests of support pressure and roof displacement further confirm the feasibility of the static fracturing technology. [Conclusion] Static fracturing technology effectively avoids safety hazards caused by sudden mine pressure changes by controlling the caving step distance and fracture sequence of the end-hanging roof. The research findings provide theoretical guidance for applying static fracturing technology to hard roof engineering.

Key words: ends hanging roof; static fracturing; cutting roofs and relieving pressure; numerical simulation; failure evolution mechanism

CLC:

最近更新