| 时间: 2025-10-14 | 次数: |
陈友良, 张乳燕, 付士根,等.固体质量分数对全尾砂固结特性影响机制研究[J].河南理工大学学报(自然科学版),2025,44(6):1-8.
CHEN Y L, ZHANG R Y, FU S G, et al.Influence of solid mass fraction on the consolidation characteristics of full tailings[J].Journal of Henan Polytechnic University(Natural Science) ,2025,44(6):1-8.
固体质量分数对全尾砂固结特性影响机制研究
陈友良1, 张乳燕2, 付士根1, 阎露璐1, 王守印1, 李海港3,4
1.中国安全生产科学研究院,北京 100083;2.北京市应急指挥保障中心,北京 100083;3.江西省应急管理科学研究院,江西 南昌 330000;4.安全生产风险监测预警与防控江西省重点实验室,江西 南昌 330000
摘要: 目的 为探究固体质量分数对尾砂固结行为的影响机制,揭示其孔隙水压与基质吸力的演化规律,进行固体质量分数对全尾砂固结特性影响机制研究。 方法 系统考察固体质量分数60%~70%尾砂的固结动力学特征。采用含水率传感器追踪体积含水率的三阶段时空演化,结合孔隙水压力和基质吸力动态监测,分析不同质量分数试样的渗流特性与固结过程。基于实验数据探讨颗粒骨架形成与水分迁移的耦合机制,并提出工程优化建议。 结果 固体质量分数显著影响尾砂固结动力学特征,高固体质量分数体系因颗粒间作用力增强形成更稳定的骨架结构,抑制渗流效率并延长超孔隙水压消散时间。体积含水率空间分布呈现显著梯度效应,70%试样上下层差异约5.6%。孔隙水压消散速率与质量分数呈正相关,基质吸力最大值随质量分数增加呈非线性增长,由59.12 kPa(Cs=60%)升至254.34 kPa(Cs=70%)。多阶段固结动力学特征揭示了水分迁移机制演变规律,最终体积含水率与初始质量分数显著负相关。固体质量分数通过调控渗流动力学与非饱和特性实现高固体含量尾砂固结行为的非线性调控。优化排放尾砂浆的固体含量可显著降低固结沉降量,从而提升坝体稳定性。 结论 该研究为尾矿库高浓度排放工艺的参数优化提供了理论依据,通过智能监测体系与动态调控策略的结合,有效强化坝体结构性能,满足现代尾矿库安全管理需求。
关键词:尾矿库;排放;固结;基质吸力
doi:10.16186/j.cnki.1673-9787.2025030077
基金项目:国家重点研发计划项目(2023YFC3012200)
收稿日期:2025/03/31
修回日期:2025/08/26
出版日期:2025/10/14
Influence of solid mass fraction on the consolidation characteristics of full tailings
Chen Youliang1, Zhang Ruyan2, Fu Shigen1, Yan Lulu1, Wang Shouyin1, Li Haigang3,4
1.China Academy of Safety Science and Technology, Beijing 100083, China;2.Beijing Emergency Command and Support Center, Beijing 100083, China;3.Jiangxi Academy of Emergency Management Science, Nanchang 330000, Jiangxi, China;4.Jiangxi Provincial Key Laboratory of Work Safety Risk Monitoring, Early Warning, Prevention and Control, Nanchang 330000, Jiangxi, China
Abstract: Objectives The influence of solids mass fraction on the consolidation behavior of unclassified, high-concentration tailings is investigated. Evolutionary patterns of pore water pressure and matric suction are revealed, and optimized engineering control strategies are proposed to enhance the stability of tailings dams. Methods Laboratory experiments were conducted to systematically examine the consolidation dynamics of high‑concentration tailings with solids mass fractions of 60%~70%. Moisture sensors were used to track the three-stage spatiotemporal evolution of volumetric water content (VWC). Dynamic measurements of pore water pressure and matric suction were analyzed to assess seepage characteristics and consolidation processes across different Cs levels. Based on the experimental data, the coupling between particle-skeleton formation and water migration was examined, and engineering optimization strategies were proposed. Results The solids mass fraction significantly affected the consolidation dynamics. Higher- Cs systems, due to stronger interparticle interactions, formed more stable particle skeletons, reduced seepage efficiency, and prolonged the dissipation time of excess pore water pressure. Pronounced spatial gradients in volumetric water content were observed, with a 6% difference between the upper and lower layers in the Cs =70% specimens.) Pore water pressure dissipation rates correlated positively with mass fraction, while the maximum matrix suction increased non-linearly from 59.12 kPa (Cs =60%) to 254.34 kPa (Cs =70%). The multistage consolidation response revealed the evolution of moisture-migration mechanisms, and the final VWC showed a significant negative correlation with the initial <i>C<sub>s</sub></i>. The solids mass fraction non-linearly regulates the consolidation behavior of high solids tailings by modulating seepage dynamics and unsaturated characteristics. Conclusions This study provides a theoretical basis for parameter optimization of high concentration discharge processes in tailings storage facilities (TSFs). Through the integration of intelligent monitoring systems with dynamic control strategies, the structural performance of the tailings dam can be effectively enhanced, thereby meeting the safety-management requirements of modern TSFs.
Key words: tailings dam; discharge; consolidation; matric suction