| 时间: 2025-10-14 | 次数: |
张超, 汤杰,刘勇锋,等.冻融循环作用下尾矿宏观力学损伤与微观结构影响研究[J].河南理工大学学报(自然科学版),2025,44(6):9-17.
ZHANG C, TANG J, LIU Y F,et al.Macromechanical damage and microstructural effects of tailings under freeze-thaw cycles[J].Journal of Henan Polytechnic University(Natural Science) ,2025,44(6):9-17.
冻融循环作用下尾矿宏观力学损伤与微观结构影响研究
张超1,2, 汤杰1,2,3, 刘勇锋4,5, 马昌坤2, 陈青林1,3, 曾鹏1,3
1.江西理工大学 资源与环境工程学院,江西 赣州 341000;2.中国科学院武汉岩土力学研究所 岩土力学与工程安全全国重点实验室,湖北 武汉 430071;3.稀有金属资源安全高效开采江西省重点实验室,江西 赣州 341000;4.重庆大学 资源及环境科学学院,重庆 400044;5.深圳市中金岭南有色金属股份有限公司,广东 深圳 518024
摘要: 目的 为揭示冻融循环作用下尾矿的宏-微观损伤机制,开展冻融循环作用下尾矿宏观力学损伤与微观结构影响研究。 方法 通过三轴固结不排水剪切试验、扫描电镜(SEM)和微米CT扫描试验,研究冻融循环次数对尾矿力学性能和微观结构的影响规律,并建立宏观力学损伤与微观结构演化的关联机制。 结果 结果表明:冻融循环导致尾矿宏观力学特性显著劣化,峰值抗剪强度经1次冻融后降幅达13.35%;5~10次冻融循环阶段的峰值强度下降率为8.8%;10~15次循环阶段峰值降幅减小至3.9%。经15次冻融循环后,黏聚力与内摩擦角分别降低50.9%,59.3%。冻融循环作用导致尾矿颗粒棱角磨损及形态圆润化,形状因子由1.38下降至1.34;孔隙分形维度从1.55增至1.64,孔隙率由8.9%上升至16.91%,其中连通孔隙占比从4.68%显著提升至15.51%.研究进一步揭示了孔隙率与抗剪强度呈非线性负相关,内摩擦角随颗粒形状因子增大呈指数增长规律。 结论 研究结果可为冻土区尾矿库稳定性分析及灾害防控提供参考。
关键词:尾矿;冻融循环;力学损伤;微观结构
doi:10.16186/j.cnki.1673-9787.2025030063
基金项目:国家重点研发计划项目(2023YFC3012200);国家自然科学基金资助项目(52304155);江西省自然科学基金资助项目(20232BAB213069);宜春市重大科技攻关项目(2023ZDKJGG04)
收稿日期:2025/03/28
修回日期:2025/05/19
出版日期:2025/1014
Macromechanical damage and microstructural effects of tailings under freeze-thaw cycles
Zhang Chao1,2, Tang Jie1,2,3, Liu Yongfeng4,5, Ma Changkun2, Chen Qinglin1,3, Zeng Peng1,3
1.School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China;2.State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China;3.Jiangxi Provincial Key Laboratory of Safe and Efficient Mining of Rare Metal Resource, Ganzhou 341000, Jiangxi, China;4.School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China;5.Shenzhen Zhongjin Lingnan Non-ferrous Metal Company Limited, Shenzhen 518024, Guangdong,China
Abstract: Objectives This study aims to reveal the macro-micro damage mechanisms of tailings materials under freeze-thaw cycling. Methods Through triaxial consolidated undrained shear tests, scanning electron microscopy (SEM), and micro-CT scanning, the effects of freeze-thaw cycle frequency on the mechanical properties and microstructural evolution of tailings were investigated. A correlation mechanism between macroscopic mechanical damage and microstructural changes was established. Results Freeze-thaw cycles significantly degraded the macroscopic mechanical properties of tailings. The peak shear strength decreased by 13.35% after one freeze-thaw cycle. During the 5~10 cycle stage, the peak strength reduction rate was 8.8%, while in the 10~15 cycle stage, the reduction rate decreased to 3.9%. After 15 cycles, cohesion and internal friction angle decreased by 50.9% and 59.3%, respectively. Freeze-thaw cycling caused particle edge abrasion and rounding, with the shape factor decreasing from 1.38 to 1.34. The pore fractal dimension increased from 1.55 to 1.64, porosity rose from 8.9% to 16.91%, and the proportion of connected pores increased markedly from 4.68% to 15.51%. Furthermore, porosity exhibited a nonlinear negative correlation with shear strength, while the internal friction angle showed an exponential increase with particle shape factor. Conclusions These findings provide a scientific basis for stability analysis and disaster prevention of tailings dams in permafrost regions.
Key words: tailings; freeze-thaw cycle; mechanical damage; microstructure