>> 自然科学版 >> 当期目录 >> 尾矿库溃坝风险精准防控技术研究与应用专题 >> 正文
充填料浆泌水特性与水分迁移机理研究
时间: 2025-10-14 次数:

杨柳华, 王永彬, 付搏涛,等.充填料浆泌水特性与水分迁移机理研究[J].河南理工大学学报(自然科学版),2025,44(6):55-63.

YANG L H, WANG Y B, FU B T,et al.Bleeding characteristics and water migration mechanism of backfill slurry[J].Journal of Henan Polytechnic University(Natural Science) ,2025,44(6):55-63.

充填料浆泌水特性与水分迁移机理研究

杨柳华1,2, 王永彬1, 付搏涛2, 付士根2, 李振涛2, 龚剑3

1.河南理工大学 土木工程学院,河南 焦作  454000;2.中国安全生产科学研究院,北京  100083;3.郑州工程技术学院 土木工程学院,河南 郑州 450044

摘要: 目的 为了探明充填料浆泌水特性与细观水分迁移之间的关联机制,揭示宏观-细观结构演化对充填料浆泌水过程的影响规律。  方法 通过正交试验设计,开展流动度、泌水率和沉缩率试验,对不同因素极差分析与功效系数计算,利用Matlab 3D可视化多因素耦合作用模型以寻求最优配比,并结合核磁共振(NMR)技术分析最优配比在不同静置时间(5,30,60,90,120,180 min)下的充填料浆细观水分迁移特征。  结果 结果表明:充填料浆的最优配比为灰砂比18,质量分数74%、减水剂掺量1%,不同因素对泌水率影响显著性顺序依次为质量分数、灰砂比、减水剂掺量;高质量分数的充填料浆主要以吸附水形式存在,孔隙水作为动态过渡态,其峰面积波动表明其参与吸附水释放与界面再吸附的平衡过程,自由水随着静置时间增加而增大。不同时期的充填料浆泌水过程可划分为诱导期、加速期、恒定期、稳定期,水分转化路径为“吸附水→孔隙水→自由水”,诱导期水分迁移速率平缓,加速期吸附水转变为自由水速率最快,泌水速率最快,恒定期保持快速泌水速率,稳定期吸附水转变受阻,料浆泌水稳定。  结论 研究结果揭示了充填料浆泌水特性与细观水分迁移关联作用机制,为确保充填质量和尾矿库的稳定性提供了理论支持。

关键词:尾矿库;多目标优化;料浆泌水;水分迁移;细观演变

doi:10.16186/j.cnki.1673-9787.2025030076

基金项目:国家重点研发计划项目(2023YFC3012200);河南省自然科学基金项目(252300420040)

收稿日期:2025/03/31

修回日期:2025/05/31

出版日期:2025/10/14

Bleeding characteristics and water migration mechanism of backfill slurry

Yang Liuhua1,2, Wang Yongbin1, Fu Botao2, Fu Shigen2, Li Zhentao2, Gong Jian3

1.School of Civil Engineering, Henan Polytechnic University, Jiaozuo  454000, Henan, China;2.China Academy of Safety Science and Technology, Beijing  100083, China;3.School of Civil Engineering, Zhengzhou University of Technology, Zhengzhou  450044, Henan, China

Abstract: Objectives This study aims to elucidate the correlation mechanism between the bleeding characteristics of backfill slurry and mesoscopic water migration, and to reveal the influence of macro-meso structural evolution on the bleeding process. Methods An orthogonal experimental design was conducted to test fluidity, bleeding rate, and settling rate. Range analysis and efficacy coefficient calculations were combined with a Matlab-based 3D visualization multi-factor coupling model to determine the optimal mix ratio. Nuclear magnetic resonance (NMR) was used to analyze the mesoscopic water migration characteristics of the optimal slurry at standing times of 5, 30, 60, 90, 120, and 180 minutes.  Results The optimal mix ratio was identified as a cement-tailings ratio of 1:8, a mass concentration of 74%, and a water-reducer dosage of 1%. The significance order of factors affecting bleeding rate was: mass concentration; cement-tailings ratio; water-reducer dosage. NMR results indicated that in high-solid-concentration backfill slurry, adsorbed water was the dominant form; pore water acted as a dynamic transitional state, with fluctuating peak areas reflecting the balance between adsorbed water release and interfacial re-adsorption; and free water increased with prolonged standing time. Conclusions The bleeding process of backfill slurry can be divided into four distinct stages: induction period, acceleration period, constant period, and stabilization period. Water migration follows the pathway of adsorbed water→pore water→free water. The migration rate is slowest during the induction period, peaks in the acceleration period as adsorbed water rapidly converts to free water, remains rapid in the constant period, and becomes restrained in the stabilization period, resulting in a steady bleeding state. This study provides insight into the mechanism linking bleeding characteristics to mesoscopic water migration and provides a theoretical basis for optimizing backfill parameters in deep mining.

Key words: tailings pond; multi-objective optimization; slurry bleeding; water migration; mesoscopic evolution

最近更新