| 时间: 2025-12-03 | 次数: |
翟亚飞, 宋志宇, 田志锋,等.基于黏弹-塑性模型的地下结构动力响应影响因素研究[J].河南理工大学学报(自然科学版),2026,45(1):170-178.
ZHAI Y F, SONG Z Y, TIAN Z F,et al.Study on the influencing factors of the dynamic response of underground structures based on a viscoelastic-plastic model[J].Journal of Henan Polytechnic University(Natural Science) ,2026,45(1):170-178.
基于黏弹-塑性模型的地下结构动力响应影响因素研究
翟亚飞1,2, 宋志宇1,2, 田志锋1,2,3, 金俊超1,2, 刘光昆1,2
1.黄河勘测规划设计研究院有限公司,河南 郑州 450003;2.水利部黄河流域水治理和水安全重点实验室(筹),河南 郑州 450003;3.大连理工大学 海岸与近海工程国家重点实验室,辽宁 大连 116024
摘要: 目的 为探讨考虑分层土体非线性的地动输入方法及地下结构动力响应影响因素,提出合理模拟层状地基地震动的输入方法,实现土体各深度位置材料参数的迭代更新,反映实际土体参数的空间分布特征。 方法 在土体结构动力分析上,将土体等效线性模型嵌套至Mohr-coulomb模型,建立黏弹-塑性模型,给出考虑土体非线性特性的分层土体-结构整体模型地震响应分析流程。以某工程为例,进行土体-结构非线性地震响应分析,研究埋深和土层参数对地下结构抗震性能的影响。 结果 结果表明:在静动荷载作用下,随着结构埋深增加,结构顶底相对位移差值逐渐减小。在相同的埋深工况下,与剪力响应相比,地震作用引起的动弯矩占比较大;保持地表加速度时程不变,随着土层剪切模量增大,结构内力响应逐渐减小。 结论 对于双层地下结构,地震作用引起的上层中柱剪力和弯矩响应较大,在结构抗震设计时应考虑。在软土质环境下的地下结构设计中,应特别关注结构的动弯矩响应,并采取有效的加固措施。
关键词:层状地基;地震动输入;非线性;地下结构;埋深;土层参数
doi:10.16186/j.cnki.1673-9787.2024010018
基金项目:国家重点研发计划项目(2021YFB2600703);中国博士后科学基金资助项目(2022M721299)
收稿日期:2024/01/04
修回日期:2024/03/21
出版日期:2025-12-03
Study on the influencing factors of the dynamic response of underground structures based on a viscoelastic-plastic model
Zhai Yafei1,2, Song Zhiyu1,2, Tian Zhifeng1,2,3, Jin Junchao1,2, Liu Guangkun1,2
1.Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, Henan, China;2.Key Laboratory of Water Management and Water Security for Yellow River Basin of Ministry of Water Resources (Under Construction), Zhengzhou 450003, Henan, China;3.State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
Abstract: Objectives Under strong seismic excitation, soil often exhibits pronounced nonlinear dynamic characteristics, which can exacerbate damage to embedded structures. Methods To investigate the seismic input method that accounts for the nonlinear behavior of layered soils and the influencing factors affecting the dynamic response of underground structures, a modeling approach was developed to simulate seismic motions in layered soils. This approach enables iterative updating of material parameters at various soil depths, thereby reflecting the spatial distribution characteristics of real soil properties. For the dynamic analysis of soil-structure systems, an equivalent linear soil model was nested within the Mohr-Coulomb model to establish a viscoelastic-plastic model. A complete seismic response analysis procedure for a layered soil-structure system considering soil nonlinearity was proposed. Using a specific engineering case, a nonlinear seismic response analysis was conducted to examine the effects of burial depth and soil parameters on the seismic performance of underground structures. Results The results indicate that, under combined static and dynamic loads, the relative displacement difference between the top and bottom of the structure decreases with increasing burial depth. Under identical burial conditions, dynamic bending moments induced by seismic loading contribute more significantly to the overall structural response than shear forces. Moreover, when the surface acceleration time history remains constant, the internal force response of the structure decreases as the soil shear modulus increases. Conclusions For double-layer underground structures, seismic actions cause greater shear and bending moment responses in the upper-layer central columns, which should be carefully considered in seismic design. In soft-soil environments, attention should be paid to the dynamic bending moment response, and effective reinforcement measures should be implemented.
Key words:layered foundation;seismic input;nonlinear;underground structure;burial depth;soil parameter