>> 自然科学版期刊 >> 2026 >> 2026年01期 >> 正文
基于数值模拟的咸水层CO2封存地质-工程参数敏感性研究
时间: 2025-12-03 次数:

张贺龙, 刘世奇, 田钰琛,等.基于数值模拟的咸水层CO2封存地质-工程参数敏感性研究[J].河南理工大学学报(自然科学版),2026,45(1):49-59.

ZHANG H L, LIU S Q, TIAN Y C,et al.Sensitivity analysis of geological and engineering parameters for CO₂ storage in saline aquifers based on numerical simulation[J].Journal of Henan Polytechnic University(Natural Science) ,2026,45(1):49-59.

基于数值模拟的咸水层CO2封存地质-工程参数敏感性研究

张贺龙1,2,3, 刘世奇1,2,3, 田钰琛1,2,3, 王文楷1,2,3, 桑树勋1,2,3, 郑司建2,4, 李兵5,6, 陈永春5,6

1.中国矿业大学 资源与地球科学学院,江苏 徐州  221116;2.中国矿业大学 江苏省煤基温室气体减排与资源化利用重点实验室,江苏 徐州  221008;3.中国矿业大学 煤层气资源与成藏过程教育部重点实验室,江苏 徐州  221008;4.中国矿业大学 碳中和研究院,江苏 徐州  221116;5.淮南矿业(集团)有限责任公司,安徽 淮南  232001;6.平安煤炭开采工程技术研究院有限责任公司,安徽省煤矿绿色低碳发展工程研究中心,安徽 淮南  232033

摘要: 目的 针对咸水层CO2封存过程中多种封存方式协同机理不明和地质、工程参数敏感性问题,开展CO2-咸水-岩体系下储层孔渗和不同封存方式协同演化规律研究。 方法 采用TOUGHREACT软件ECO2N模块,以淮南煤田顾北煤矿奥陶系马家沟组咸水层为研究对象,开展为期100 a(注入期10 a)的数值模拟研究。通过参数敏感性分析,揭示关键地质(储层各向异性、盐度)、工程(CO2注入速率)因素对深部咸水层CO2不同封存方式下的封存效果影响。 结果 结果表明:模拟周期内,CO2羽流最大扩展半径约1 000 m;CO2注入导致注入井周围pH降至5.36,白云石等矿物溶解,释放的Mg2⁺抑制方解石沉淀,间接促进溶蚀,孔隙度提升0~0.52%,渗透率提升0~1.6%;构造封存为主要封存形式,束缚、溶解和矿化封存分别占16.9%,3.9%,0.5%;敏感性分析表明,CO2注入速率越大,其封存量越大;咸水层初始盐度越大,浮力效应越明显,构造封存量越大,但盐析效应会抑制溶解封存效果;水平与垂向渗透率比值kh/kv从1增至100,束缚和溶解封存量分别提升43.1%和34.3%,kh/kv增大影响CO2分布与赋存状态,促使封存方式由构造主导向物理-化学协同转化。 结论 深部咸水层CO2封存以构造封存为主导,地球化学作用通过矿物溶解-离子迁移-沉淀循环转化影响孔渗结构,储层各向异性、咸水盐度、CO2注入速率可通过调控流体运移路径和相态分布优化不同封存方式下封存效果。

关键词:咸水层封存;地质-工程参数;封存方式;地球化学作用;敏感性分析

doi:10.16186/j.cnki.1673-9787.2025060017

基金项目:国家重点研发计划项目(2024YFB4106300)

收稿日期:2025/06/10

修回日期:2025/08/05

出版日期:2025-12-03

Sensitivity analysis of geological and engineering parameters for CO₂ storage in saline aquifers based on numerical simulation

Zhang Helong1,2,3, Liu Shiqi1,2,3, Tian Yuchen1,2,3, Wang Wenkai1,2,3, Sang Shuxun1,2,3, Zheng Sijian2,4, Li Bing5,6, Chen Yongchun5,6

1.School of Resources and Earth Sciences, China University of Mining and Technology, Xuzhou  221116, Jiangsu, China;2.Key Laboratory of Coal-based Greenhouse Gas Emission Reduction and Resource Utilization, China University of Mining and Technology, Xuzhou  221008, Jiangsu, China;3.Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process, Ministry of Education, China University of Mining and Technology, Xuzhou  221008, Jiangsu, China;4.Carbon Neutrality Research Institute, China University of Mining and Technology, Xuzhou  221116, Jiangsu, China;5.Huainan Mining Industry (Group) Co., Ltd., Huainan  232001, Anhui, China;6.Ping’an Mining Engineering Technology Research Institute Co., Ltd., Anhui Coal Mine Green and Low Carbon Development Engineering Research Center, Huainan  232033, Anhui, China

Abstract: Objectives This study is conducted to investigate the coupled evolution of reservoir porosity-permeability and multiple CO2 trapping mechanisms in the CO2-brine-rock system, with the unclear synergistic mechanisms among different trapping methods and the sensitivity of key geological and engineering parameters during CO2 sequestration in saline aquifers being addressed. Methods A 100-year numerical simulation (including a 10-year injection period) is performed using the TOUGHREACT software with the ECO2N module. The model is applied to the deep saline aquifer of the Ordovician Majiagou Formation in the Gubei Mine of the Huainan Coalfield. Furthermore, a parameter sensitivity analysis is designed to further elucidate the influence of key geological (reservoir anisotropy, salinity) and engineering (CO2 injection rate) factors on the efficiency of these CO2 trapping mechanisms. Results Results demonstrate that the maximum lateral extent of the CO2 plume reaches approximately 1000 meters over the simulation period. CO2injection reduces pH to 5.36 near the injection well, leading to the dissolution of dolomite, which releases Mg⟡⁺ and inhibits calcite precipitation. This indirectly enhances dissolution processes, resulting in porosity and permeability increases of 0~0.52% and 0~1.6%, respectively. Structural trapping is identified as the dominant mechanism, followed by residual (16.9%), solubility (3.9%), and mineral trapping (0.5%). Sensitivity analysis indicates that higher CO2 injection rates enhance the overall storage capacity. Greater initial brine salinity intensifies buoyancy-driven migration, thereby increasing structural trapping, while salt-out effects suppresse solubility trapping. When the horizontal-to-vertical permeability ratio (kh/kv) increases from 1 to 100, residual and solubility trapping rise by 43.1% and 34.3%, respectively. An increased kh/kv ratio alters CO₂ distribution and phase partitioning, shifting the dominant trapping mechanism from structural dominance to a combination of physical and geochemical processes. Conclusions Structural trapping is confirmed as the primary mechanism for CO2 sequestration in deep saline aquifers. Geochemical reactions influence the porosity-permeability structure through a cycle of mineral dissolution, ion migration, and precipitation. Reservoir anisotropy, brine salinity, and CO2 injection rate can be optimized to regulate fluid flow pathways and phase distribution, thereby enhancing the storage effectiveness of multiple CO2 trapping mechanisms.

Key words:saline aquifer storage;geological and engineering parameters;sequestration methods;geochemical interactions;sensitivity analysis

最近更新