| 时间: 2025-12-03 | 次数: |
李凯锐, 王明洋, 戚承志,等.基于特征能量因子的深部围岩分区破裂空间演化特征研究[J].河南理工大学学报(自然科学版),2026,45(1):1-9.
LI K R, WANG M Y, QI C Z,et al.Spatial evolution characteristics of zonal disintegration in deep surrounding rock based on characteristic energy factor[J].Journal of Henan Polytechnic University(Natural Science) ,2026,45(1):1-9.
基于特征能量因子的深部围岩分区破裂空间演化特征研究
李凯锐1,2, 王明洋3, 戚承志1, 常庭瑞1, 吕易铮1
1.北京建筑大学 土木与交通工程学院,北京 100044;2.中铁十四局集团有限公司,山东 济南 250014;3.中国人民解放军陆军工程大学 爆炸冲击防灾减灾国家重点实验室,江苏 南京 210007
摘要: 目的 传统连续介质力学和断裂力学理论具有局限性,难以准确揭示三维应力状态和复杂地质条件下深部围岩空间构造特征,进行基于特征能量因子的深部围岩分区破裂空间演化特征研究。 方法 基于深部岩体准共振和摆形波现象的无量纲条件,推导能够反映深部岩体能量演化的“特征能量因子”。该特征能量因子从统计物理的角度描述深部围岩的含能特性。通过对大量现场监测数据和模型试验数据的统计分析,揭示在分区破裂化现象发生时,特征能量因子的空间变化规律。 结果 通过与Shemyakin提出的最远破裂区半径的经验公式和某矿区3 213工作面的实测数据进行对比,验证了分区破裂化现象的空间构造特征与特征能量因子之间的量级演化规律,表明围岩特征能量因子的演化能够反映出分区破裂化的空间构造特征。 结论 该空间构造规律模型参数少、测量方便,具备良好的实用性和推广性,适用于深部巷道施工的预判分析和围岩支护设计。此外,该模型能够在实际工程中大大简化计算,为提升深地工程安全提供了新途径,对未来深地巷道施工规划和围岩支护策略的制定具有重要意义。
关键词:深部巷道;分区破裂化;开挖扰动;空间构造;特征能量因子
doi:10.16186/j.cnki.1673-9787.2024100025
基金项目:国家自然科学基金资助项目(12172036);北京建筑大学内涵发展-青年教师科研能力提升计划资助项目(X22012)
收稿日期:2024/10/18
修回日期:2024/11/19
出版日期:2025-12-03
Spatial evolution characteristics of zonal disintegration in deep surrounding rock based on characteristic energy factor
Li Kairui1,2, Wang Mingyang3, Qi Chengzhi1, Chang Tingrui1, Lyu Yizheng1
1.School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;2.China Railway 14th Bureau Group Co., Ltd., Jinan 250014, Shandong, China;3.State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact, Army Engineering University of PLA, Nanjing 210007, Jiangsu, China
Abstract: Objectives Due to the limitations of traditional continuum mechanics and fracture mechanics, it is challenging to accurately reveal the spatial structural characteristics of deep surrounding rock, particularly under three-dimensional stress states and complex geological conditions. Methods Based on the dimensionless conditions derived from quai-resonance and pendulum wave phenomena, a “characteristic energy factor” was derived to reflect the energy evolution of deep rock masses. This factor describes the energy-bearing properties of deep surrounding rock from a statistical physics perspective. Statistical analysis of field monitoring and model test data revealed the spatial variation of the characteristic energy factor during zonal disintegration. Results Comparative analysis with Shemyakin’s empirical formula for the farthest fracture zone radius and measurement data from the 3213 working face in an underground mine validated the scaling evolution relationship between the spatial structure of zonal disintegration and the characteristic energy factor. This indicates that the evolution of the characteristic energy factor can reflect the spatial structural characteristics of zonal disintegration. Conclusions The proposed model has a minimal number of parameters, is easy to measure, and demonstrates strong practicality and applicability, making it well-suited for predictive analysis and support design in deep tunnel construction. Additionally, this model significantly simplifies calculations and provides a novel approach to improving safety in deep underground engineering. It holds considerable potential for future planning of deep tunnel construction and the development of surrounding rock support strategies.
Key words:deep tunnel;zonal disintegration;excavation disturbance;spatial distribution;characteristic energy factor