| 时间: 2025-12-03 | 次数: |
高保彬, 陈志斌, 任连伟,等.高速铁路采空区地基“活化”及临界荷载研究[J].河南理工大学学报(自然科学版),2026,45(1):70-76.
GAO B B, CHEN Z B, REN L W, et al.Study on ‘activation’ and critical load of the foundation in the mined-out area under a high-speed railway[J].Journal of Henan Polytechnic University(Natural Science) ,2026,45(1):70-76.
高速铁路采空区地基“活化”及临界荷载研究
高保彬1,2, 陈志斌1,2, 任连伟3, 邹友峰4, 王昕1,2, 朱宏博1,2, 任闯难1,2
1.河南理工大学 河南省瓦斯地质与瓦斯治理重点实验室-省部共建国家重点实验室培育基地,河南 焦作 454000;2.河南理工大学 安全科学与工程学院,河南 焦作 454000;3.河南理工大学 土木工程学院,河南 焦作 454000;4.河南理工大学 测绘与国土信息工程学院,河南 焦作 454000
摘要: 目的 为了合理预计高速铁路列车动荷载是否会引起下方采空区“活化”的阈值,开展高速铁路采空区地基“活化”及临界荷载研究。 方法 采用理论分析计算和数值模拟相结合的方法,系统分析高速铁路采空区地基“活化”判定、采空区高速铁路列车动荷载及对应的列车速度与轴重的计算。基于高速铁路采空区地基“活化”判定与高速铁路列车动荷载计算,建立采空区高速铁路临界荷载计算方法,应用于工程实践并得到临界荷载,对应得到高速铁路列车临界静轴重与临界速度;通过MIDAS软件进行数值模拟计算,求取导水裂隙带高度和临界荷载范围,验证采空区高速铁路临界荷载计算方法及理论分析计算结果的可行性和正确性。 结果 结果表明:在高速铁路列车通过采空区地表时,临界荷载为26.60 t。以设计静轴重17 t通过采空区地表时,临界车速为188.24 km/h,以设计速度250 km/h通过采空区地表时,临界静轴重为15.20 t。高速铁路列车以不超过计算的临界荷载26.60 t运行时,采空区地基不易“活化”;若同时以设计速度250 km/h和设计静轴重17 t通过采空区地表时,高速铁路列车荷载29.75 t已超过计算的临界荷载,为保证高速铁路和列车安全,应进行采空区处理。 结论 研究结果对高速铁路在采空区地表的建设和治理方案选择具有一定的指导价值。
关键词:高速铁路采空区;采空区“活化”;交通荷载;数值模拟
doi:10.16186/j.cnki.1673-9787.2023090030
基金项目:国家自然科学基金资助项目(U1810203)
收稿日期:2023/09/14
修回日期:2024/03/08
出版日期:2025-12-03
Study on ‘activation’ and critical load of the foundation in the mined-out area under a high-speed railway
Gao Baobin1,2, Chen Zhibin1,2, Ren Lianwei3, Zou Youfeng4, Wang Xin1,2, Zhu Hongbo1,2, Ren Chuangnan1,2
1.State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Jiaozuo 454000, Henan, China;2.School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China;3.School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China;4.School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
Abstract: Objectives This study aims to reasonably predict the threshold at which the dynamic load of high-speed trains may cause ‘activation’ of the foundation in mined-out areas. Methods A combination of theoretical analysis and numerical simulation was employed to systematically investigate the determination of foundation ‘activation’ in mined-out areas beneath high-speed railways, the dynamic loads imposed by trains, and the corresponding calculations of train speed and axle load. Based on the ‘activation’ criteria and dynamic load analysis, a method for calculating the critical load of high-speed railway foundations above mined-out areas was established and applied to engineering practice to obtain the critical load, corresponding critical static axle load, and critical train speed. Numerical simulations using MIDAS software were conducted to determine the height of water-conducting fractured zones and the range of critical loads, thereby verifying the feasibility and accuracy of the proposed method and theoretical calculations. Results The results indicate that when a high-speed train passes over a mined-out area, the critical load is 26.60 t. For a designed static axle load is 17 t, the corresponding critical speed is 188.24 km/h; for a designed speed of 250 km/h, the critical static axle load is 15.20 t. When the train operates below the critical load of 26.60 t, the foundation in the mined-out area is unlikely to be ‘activated’. However, if the train simultaneously runs at the design speed of 250 km/h and a static axle load of 17 t, the load reaches 29.75 t, exceeding the calculated critical load. In this case, treatment of the mined-out area is necessary to ensure the safety of both the railway and the train. Conclusions The findings provide valuable guidance for the construction and treatment schemes of high-speed railway foundations above mined-out areas.
Key words:high-speed railway;mined-out area;goaf ‘activation’;traffic loadnumerical simulation