| 时间: 2026-01-28 | 次数: |
谭毅, 王宇, 李辉, 等.厚松散层内“类散体拱”结构演化及覆岩运移规律[J].河南理工大学学报(自然科学版),2026,45(2):43-53.
TAN Y, WANG Y, LI H, et al. Structural evolution of a quasi-granular arch within a thick loose layer and overburden movement behavior[J].Journal of Henan Polytechnic University(Natural Science) ,2026,45(2):43-53.
厚松散层内“类散体拱”结构演化及覆岩运移规律
谭毅1,2,3, 王宇1, 李辉1, 张少普1, 冯羿翔1, 葛志博1, 汤泽4, 张志翔4
1.河南理工大学 能源科学与工程学院,河南 焦作 454003;2.煤炭安全生产河南省协同创新中心,河南 焦作 454003;3.河海大学 地球科学与工程学院,江苏 南京 211100;4.河南省第四地质矿产调查院有限公司, 河南 郑州 450046
摘要: 目的 为探究松散层内“类散体拱”结构发育与地表损害之间的关系,开展厚松散层内“类散体拱”结构演化及覆岩运移规律研究。 方法 以鹤煤五矿2303工作面为研究背景,综合运用PFC颗粒流数值模拟、现场钻孔漏失量观测联合微动勘探实测和非线性回归分析等方法进行研究。 结果 随着工作面推进,基岩整体破坏形态呈“正梯形”,松散层底部颗粒受基岩弯曲下沉扰动形成“拱形”胶结破坏区,颗粒在运动压实过程中形成具有一定承载能力的“类散体拱”结构;裂隙场、应力场和位移场均具有阶段性发育特征,导水裂隙带高度发育经历快速增长、缓增、骤增和稳定4个阶段,应力场演化主要经历基岩“压力拱”结构发育、“压力拱”与“类散体拱”结构联合演化、“类散体拱”结构发育3个阶段,地表下沉主要经历缓慢下沉、快速下沉、急速下沉和稳定下沉4个阶段,“三场”演化各阶段相互对应;通过在地表构建测量圆测量开采过程中地表下沉值,地表下沉曲线整体呈近似“V”形,开采结束后在采空区中部地表出现“台阶裂缝”,采空区两侧出现拉伸裂缝,与实际勘探结果吻合;现场联合钻孔漏失量观测和微动勘探实测表明,2303工作面导水裂隙带高度为147.46 m,裂采比为16.49;垮落带高度为57.46 m,垮采比为6.43;基于回归理论构建厚松散层地表最大下沉值多元非线性预测公式,有效降低了考虑单一影响因素地表最大下沉值预测误差,获得良好的拟合优度0.98。 结论 研究方法可为类似条件下煤矿的安全生产以及地表保护提供参考。
关键词:厚松散层;类散体拱;导水裂隙带;覆岩破坏;地表下沉
doi: 10.16186/j.cnki.1673-9787.2024110017
基金项目:国家自然科学基金优秀青年基金项目(52322403);国家自然科学基金面上项目(52174108);河南省重点研发专项(251111321400);河南省高校科技创新团队(25IRTSTHN011)
收稿日期:2024/11/08
修回日期:2024/12/03
出版日期:2026/01/28
Structural evolution of a quasi-granular arch within a thick loose layer and overburden movement behavior
Tan Yi1,2,3, Wang Yu1, Li Hui1, Zhang Shaopu1, Feng Yixiang1, Ge Zhibo1, Tang Ze4, Zhang Zhixiang4
1.School of Energy Science and Engineering, Henan Polytechnic University. Jiaozuo 454003, Henan, China;2.Henan Provincial Collaborative Innovation Center for Coal Safety Production, Jiaozuo 454003, Henan, China;3.School of Earth Sciences and Engineering, Hehai University, Nanjing 210098, Jiangsu, China;4.The Fourth Geological Exploration Institute of Henan Geology and Mineral Bureau, Zhengzhou 450007, Henan, China
Abstract: Objectives To investigate the relationship between the development of a quasi-granular arch structure within a loose layer and surface damage, this study examines the structural evolution of the quasi-granular arch and the overburden movement behavior under a thick loose layer. Methods Taking the 2303 working face of Hemei No.5 Mine as the engineering background, PFC particle flow numerical simulation, on-site drilling leakage observation combined with microseismic exploration, and nonlinear regression analysis were comprehensively employed. Results The results indicate that, with the advance of the working face, the overall failure mode of the bedrock exhibits a positive trapezoidal shape. Particles at the bottom of the loose layer are disturbed by bedrock bending and subsidence, forming an arch-shaped bonded failure zone. During particle movement and compaction, a quasi-granular arch structure with a certain bearing capacity is gradually formed. The fissure field, stress field, and displacement field show distinct stage-dependent evolution characteristics. The development height of the water-conducting fracture zone experiences four stages: rapid growth, slow growth, abrupt increase, and stabilization. The stress field evolution undergoes three stages: development of the bedrock pressure arch, coupled evolution of the pressure arch and quasi-granular arch, and independent development of the quasi-granular arch. Surface subsidence evolves through four stages: slow subsidence, accelerated subsidence, rapid subsidence, and stabilization, corresponding well to the staged evolution of the three fields. Surface subsidence measurements based on a surface monitoring circle show that the subsidence curve is approximately V-shaped. After mining, step-like cracks appear in the central area of the goaf, while tensile cracks develop on both sides, consistent with field investigation results. Field observations indicate that the height of the water-conducting fracture zone reaches 147.46 m, with a fracture-to-mining ratio of 16.49, while the caving zone height is 57.46 m, with a caving-to-mining ratio of 6.43. Based on regression theory, a multivariate nonlinear prediction model for maximum surface subsidence under thick loose layers is established, effectively reducing prediction errors caused by single-factor consideration and achieving a fitting coefficient of 0.98. Conclusions The proposed results and methods provide a useful reference for coal mine safety production and surface protection under similar geological conditions.
Key words: thick loose layers; quasi-granular arch; water-conducting fracture zone; overburden failure; surface subsidence