>> 自然科学版 >> 当期目录 >> 煤矿绿色智能开采与岩层控制 >> 正文
静态致裂作用下采煤工作面端头悬顶破断演化机理研究
时间: 2026-01-28 次数:

袁瑞甫, 李辉, 董卓,等.静态致裂作用下采煤工作面端头悬顶破断演化机理研究[J].河南理工大学学报(自然科学版),2026,45(2):54-63.

YUAN R F, LI H, DONG Z,et al.Failure evolution mechanism of the end-area hanging roof of a coal mining face under static fracturing effects[J].Journal of Henan Polytechnic University(Natural Science) ,2026,45(2):54-63.

静态致裂作用下采煤工作面端头悬顶破断演化机理研究

袁瑞甫1,2,3, 李辉1,2, 董卓1, 张群磊1

1.河南理工大学 能源科学与工程学院,河南 焦作  454003;2.煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作  454003;3.河南理工大学 郑州高等研究院, 河南 郑州  451464

摘要: 目的 为了揭示采场端头悬顶破断演化机理并实现合理矿压控制,开展悬顶破断静态致裂破坏规律与最佳钻孔间距研究。  方法 利用连续-非连续单元方法(CDEM)建立采场端头悬顶破断数值模型,分析悬顶破断静态致裂破坏规律;基于某矿5-2煤层实际地质条件建立工作面端头区域地层数值模型,探究开挖过程中静态致裂前后悬顶变形、破断过程,揭示静态破碎剂作用下悬顶破断演化机理。 结果 结果表明:静态破碎剂膨胀压力与悬顶抗拉强度呈正比,当抗拉强度低于8 MPa且膨胀压力≥30 MPa时致裂效果最佳;悬顶致裂钻孔最佳间距为1.25 m;静态致裂前工作面端头悬顶周期垮落步距为37.5~22.5 m,平均步距27.5 m,而静态致裂后周期垮落步距减少至12~17 m;开采工作面支架压力和顶板位移现场测试结果进一步表明静态致裂技术的可行性。  结论 静态致裂技术通过控制悬顶垮落步距与破裂顺序,可有效避免矿压突变带来的安全隐患,研究结果可为静态致裂技术致裂坚硬顶板工程提供理论指导。

关键词:端头悬顶;静态致裂;切顶卸压;数值模拟;破断机理

doi:10.16186/j.cnki.1673-9787.2024120020

基金项目:国家自然科学基金资助项目(52174109);河南省高校科技创新团队支持计划项目(22IRTSTHN005);河南省科技攻关项目(232102321128)

收稿日期:2025/03/09

修回日期:2025/07/24

出版日期:2026/01/28

Failure evolution mechanism of the end-area hanging roof of a coal mining face under static fracturing effects

Yuan Ruifu1,2,3, Li Hui1,2, Dong Zhuo1, Zhang Qunlei1

1.School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo  454003, Henan, China;2.Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo  454003, Henan, China;3.Zhengzhou Institute for Advanced Research of Henan Polytechnic University, Zhengzhou  451464, Henan, China

Abstract: Objectives To reveal the failure evolution mechanism of the end-area hanging roof of a coal mining face and to achieve rational mine pressure control, this study investigates the static fracturing failure characteristics of the hanging roof and determines the optimal drilling spacing. Methods A numerical model of end-area hanging roof failure was established using the Continuous-Discontinuous Element Method (CDEM) to analyze the static fracturing failure characteristics. Based on the geological conditions of the 5-2 coal seam in a representative mine, a numerical model of the strata in the end area of the working face was constructed to investigate the deformation and fracture processes of the hanging roof before and after static fracturing during excavation, thereby revealing the failure evolution mechanism under the action of static cracking agents. Results The results indicate that the expansion pressure of the static cracking agent is positively correlated with the tensile strength of the hanging roof. When the tensile strength is lower than 8 MPa and the expansion pressure is ≥30 MPa, optimal fracturing performance is achieved. The optimal drilling spacing for hanging roof fracturing is 1.25 m. Before static fracturing, the periodic caving interval of the end-area hanging roof ranges from 37.5 m to 22.5 m, with an average interval of 27.5 m. After static fracturing, the periodic caving interval is reduced to 17 m to 12 m. Field measurements of support resistance and roof displacement further verify the feasibility of the static fracturing technique.  Conclusions By regulating the caving interval and fracture sequence of the hanging roof, static fracturing technology can effectively mitigate safety hazards induced by sudden mine pressure variations. The findings provide theoretical guidance for the engineering application of static fracturing technology in hard roof control.

Key words: end-area hanging roof; static fracturing; roof cutting and pressure relief; numerical simulation; failure evolution mechanism

最近更新