>> 自然科学版 >> 当期目录 >> 煤矿绿色智能开采与岩层控制 >> 正文
蒙东极弱胶结地层综放开采覆岩运移规律数值模拟研究
时间: 2026-01-28 次数:

权锡柱, 黄尊英, 闫帅,等.蒙东极弱胶结地层综放开采覆岩运移规律数值模拟研究[J].河南理工大学学报(自然科学版),2026,45(2):156-165.

QUAN X Z, HUANG Z Y, YAN S,et al.Numerical simulation of overburden migration in a top-coal caving face under extremely weakly cemented strata in Eastern Inner Mongolia[J].Journal of Henan Polytechnic University(Natural Science) ,2026,45(2):156-165.

蒙东极弱胶结地层综放开采覆岩运移规律数值模拟研究

权锡柱1, 黄尊英1, 闫帅2

1.华润电力(锡林郭勒)煤业有限公司,内蒙古 锡林郭勒盟  026000;2.中国矿业大学 深地工程智能建造与健康运维全国重点实验室,江苏 徐州  221116

摘要: 目的 为掌握蒙东白垩系极弱胶结地层综放开采覆岩运移规律及地表沉陷特征,以五间房煤田典型工作面为工程背景,开展蒙东极弱胶结地层综放开采覆岩运移规律数值模拟研究。  方法 首先,基于PFC2D 5.0建立颗粒流数值模型,对比地表沉降的现场实测值与模拟值,验证模型参数的合理性;其次,综合力链图、主应力图与位移图分析综放开采覆岩的运移规律;最后,分析埋深、采高、推进速度影响下覆岩运移特性的敏感性。  结果 结果表明:上覆岩层大体经历3个阶段:陷落拱形成和快速湮灭阶段、陷落盆地逐步形成阶段、陷落盆地周期性扩展阶段;移动支承压力场峰值的分布范围为8.19~11.86 MPa,回采200 m时其最大偏应力场峰值为10.76 MPa,应力水平普遍较低,但明显高于岩层的力学强度;覆岩运移的3个阶段末期的地表最大沉陷值分别为0.95,6.67,8.85 m,相比西部侏罗系矿井的开采实践,地表沉降明显较大;敏感性分析结果表明,采高、埋深与推进速度的R值分别为5.37,2.76,2.01,说明采高对覆岩运移的影响最大。  结论 该研究成果可为蒙东白垩系极弱胶结地层采动引起的灾害防控提供理论指导。

关键词:白垩系;极弱胶结地层;颗粒流;覆岩运移;敏感性分析

doi:10.16186/j.cnki.1673-9787.2024100029

基金项目:国家自然科学基金资助项目(51574223)

收稿日期:2024/10/21

修回日期:2025/04/25

出版日期:2026/01/28

Numerical simulation of overburden migration in a top-coal caving face under extremely weakly cemented strata in Eastern Inner Mongolia

Quan Xizhu1, Huang Zunying1, Yan Shuai2

1.China Resources Power (Xilingol) Coal Industry Co., Ltd., Xilingol  026000, Inner Mongolia, China;2.State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology, Xuzhou  221116, Jiangsu, China

Abstract: Objectives To investigate the overburden migration behavior and surface subsidence characteristics induced by top-coal caving mining in the extremely weakly cemented Cretaceous strata of Eastern Inner Mongolia, a numerical simulation study was carried out using a typical working face of the Wujianfang coalfield as the engineering background. Methods A particle flow numerical model was first established based on PFC2D 5.0, and the rationality of model parameters was verified by comparing the simulated surface subsidence with in-situ measured data. The overburden migration characteristics were then analyzed by integrating force chain diagrams, principal stress distributions, and displacement fields. Finally, a sensitivity analysis was conducted to evaluate the effects of burial depth, mining height, and advancing speed on overburden migration.  Results The results indicate that the overlying strata generally experience three stages: formation and rapid dissipation of a caving arch, gradual formation of a subsidence basin, and periodic expansion of the subsidence basin. The peak range of the front abutment pressure is 8.19~11.86 MPa, and the maximum deviatoric stress reaches 10.76 MPa at a mining distance of 200 m. Although the overall stress level is relatively low, it is significantly higher than the mechanical strength of the rock strata. The maximum surface subsidence values at the end of the three stages are 0.95 m, 6.67 m, and 8.85 m, respectively, which are notably larger than those observed in western Jurassic coal mines. Sensitivity analysis shows that the R-values of mining height, burial depth, and advancing speed are 5.37, 2.76, and 2.01, respectively, indicating that mining height has the greatest influence on overburden migration.  Conclusions The findings provide theoretical guidance for the prevention and control of mining-induced hazards in extremely weakly cemented Cretaceous strata in Eastern Inner Mongolia.

Key words: Cretaceous; extremely weakly cemented strata; particle flow code; overburden migration; sensitivity analysis

最近更新